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Definition 

Project Overview 
 
With the introduction of Google Street View, a large collection of data has been made available 
for improving the accuracy of maps. The street view images taken of buildings can be analysed 
to extract house numbers which can be included in maps. This image analysis was done 
manually before the development of automated methods. The manual process is slow and 
expensive, limiting the quantity of data that can extracted from these images. With recent 
advances in automated methods, much larger volumes of Google Street View images can be 
used in map making.  

See Fig 1 below for a sample of the house number images that are captured by Google Street 
View. 

 
Fig 1: Examples of house number images from Google Streetview  1

 

As can be seen from the example images above, there is a variation in quality of images, fonts, 
positioning of numbers which pose challenges that must be overcome in the computational 
approach to reading these house numbers accurately. 

For this capstone project, I will be leveraging a deep learning architecture to process and 
recognise the number sequences in the publicly available SVHN dataset .  2

The Street View House Numbers (SVHN) dataset is a dataset of about 200k street numbers, 
along with bounding boxes for individual digits, giving about 600k digits total. 

1 Images from  Multi-digit Number Recognition from Street View Imagery using Deep Convolutional 
Neural Networks 
2 http://ufldl.stanford.edu/housenumbers/ 
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Problem Statement 
 
The problem of identifying characters is similar to the character recognition problem from the 
notMNIST dataset tackled as part the of the Udacity Deep Learning course. It is however more 
complicated in that here we are attempting to classify sequences of digits. It is further 
complicated by the variety of styles of the images and image quality since these are images 
taken from the real world where factors such as shadows and wear-and-tear of signs come into 
play. 
 
In this capstone project, I will develop a solution to the problem of multi-character digit 
recognition by training a deep convolutional neural networking using the Google Street View 
images dataset.  
 
I will be basing my approach on the architecture demonstrated by GoodFellow, et Al in the paper 
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural 
Networks [3].  In this paper, they describe how traditional approaches to solve this problem 
typically separate out the localisation, segmentation, and recognition steps, however they 
propose a unified approach that integrates these three steps via the use of a deep convolutional 
neural network that operates directly on the image pixels. 
 
My solution will be able to classify numbers up to 5 digits since most house numbers are within 
the range 1-5 digits. Given an image with a number that is 1-5 digits long, my solution will output 
an integer of 1-5 digits corresponding to what it predicts the number in the image to be. 
 
For this capstone project, the deliverables that I will be producing are: 
 

1. Project Report (this document) 
2. Source Code 
3. README for the source code 

 
My approach will be as follows: 

1. Collect the raw Google Street View House Number dataset  
2. Do preliminary analysis to determine the preprocessing necessary. 
3. Do the preprocessing needed, and split the datasets into training, validation and test sets 
4. Generate a synthetic dataset for developing the first version of the model 
5. Construct the deep convolutional network based on the architecture proposed by 

GoodFellow et Al [3] 
6. Fine tune the model  
7. Test the effectiveness of the model using new images from my environment 

 

Metrics 
 
The metric that I will use to measure the performance of my trained model is ‘accuracy’. In order 
to be considered accurate, each digit in the house number needs to be identified correctly. There 
is no partial accuracy for getting some of the digits in the house number correct. This is justified 
because an incorrect number can completely lead a map user astray, for example 915 vs 115 
are likely to be in very different places geographically.  
 

Accuracy = (number of exact matches)/(number of test samples)  

2 



Analysis 

Data Exploration 

The street view house number dataset comes in two formats: 
1. Original images with character level bounding boxes. 
2. MNIST-like 32-by-32 images centered around a single character (many of the images do 
contain some distractors at the sides). 
 
I used the first format, since this provides training images in the real life context in which I will be 
testing the final model. 
 
There are a total of 46,470 images split into a train set and a test set: 

● Train set = 33,402 images; Test set = 13,068 images 
 
Please see fig 2 below for examples. Note that the bounding boxes are not actually on the 
images, instead the train and test sets each come with a data file that contains the bounding box 
information for each digit in each image. 
 

 
Fig 2: Examples of images from the Street View House Number dataset 

 
It should be noted that the dataset does not come with labels in the form of an integer for the 
house number, instead we are provided information on each individual digit. For example in the 
first house number above, we are provided with the information that the image has three digits 4, 
5 and 1 along with the bounding box information (Top, Left, Width, Height) for each digit in the 
image. Therefore, as part of pre-processing, the label 451 must be computed assuming that the 
number runs from left to right. 
 
For the digits in the source data, there are 10 classes, 1 for each digit. Digit '1' has label 1, '9' has 
label 9 and '0' has label 10. 
 
There are 73257 digits for training, 26032 digits for testing, and 531131 additional, somewhat 
less difficult samples, to use as extra training data . I did not use the extra images, only the 3

training and testing sets provided. 
 
It should be noted also that the labels provided for the digits and the bounding boxes are not 
perfectly accurate. This dataset abnormality is possibly due to some human error that crept into 
the manual labelling process. 

3 As per the information obtained from http://ufldl.stanford.edu/housenumbers/ 
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Exploratory Visualization 

 
An important characteristic of the dataset is the distribution of the number of digits. From the 
chart below, we see that most house numbers have two digits with very few having 4 or 5 digits. 
Interestingly, 88 out of the 46,470 house numbers had 6 or 7 digits. There were no house 
numbers with more than 7 digits. 
 

 
Fig 3: Distribution of Number of Digits on the Street View House Number Dataset 

 
Furthermore, when one explores the distribution of the number of samples for each digit, we see 
that the vast majority is the digit 1 and the digits 0 and 9 have the fewest samples for both the 
training and the test set as illustrated in the chart below. 
 
 

 
Fig 4: Distribution of Digit Samples on the Street View House Number Dataset 
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Algorithms and Techniques 

 
My approach centred on making use of convolutional neural networks. Convolutional neural 
networks address an important characteristic of images in that they encode spatial information 
that we are not interested in for the purpose of classification, and which complicate the task of 
classification when using traditional neural networks. For example, say we have two images. One 
with the number 8 in the top left corner and another with the number 8 in the bottom right corner. 
For the sake of classification, it is an image of the number 8, but to a normal neural network that 
works directly on the pixels, these look like representations of two completely different things .  
 
We need to help the neural network to summarise the image into a set of higher level concepts. 
We do this through a series of convolutions. The goal of the convolutions is to remove the spatial 
dimensionality of the image and replace this with a series of statistical facts about the image. 
Examples of the kind of facts that a network could learn about the image as a whole might be 
things like whether the image contains eyes, claws and whiskers. It does this by scanning the 
image for the small shapes that make up this eyes, claws and whiskers. This scanning makes 
use of the idea of weight sharing. Say you have a colour image that is 54 length x 54 width x 3 
colour channels. Each convolutional layers might scan a 5x5x3 segment of the image and map 
this to a vector of dimension 16. In this case it is filtering the segment for 16 things. It then 
continues to scan other 5x5x3 segments of the image searching for the same 16 things, and in 
the end produces a new tensor that has a depth of 16 and a length and width based on how 
many pixels it skipped over horizontally and vertically when moving to the the next segment of 
the image to scan. 
 
The image below is taken from the Udacity Deep Learning course and illustrates how this spatial 
reduction is achieved through successive convolutions of the original image on the left. The 
output of the final convolution is then fed into a regular deep neural network. 
 
 

 
Fig 5: Illustration of the mechanics of a convolutional network (image from Udacity Deep Learning Course) 

 
 
My goal was to develop a deep convolutional neural network based on the model architecture 
below. This is inspired by the architecture used by Goodfellow, et Al [3] in their solution that 
achieved 96% accuracy.  
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Fig 6: Model Deep Neural Network Architecture 

 
Below is an explanation of each part of this architecture: 

A) Preprocess the raw images 
This is in order to obtain numpy arrays from the PNG files, cropped to uniform 
dimensions (54x54x3) and normalised (zero mean and equal variance) to make the 
computations easier. See Data Preprocessing section for more details. 

B) Process the image through a series of convolutions 
The convolutional layers extract features from the image used to identify individual digits 
and infer the number of digits in the house numbers. This results in a representation of 
the features that does not depend on where exactly the number is located in the image. 
Max pooling is employed to reduce sensitivity of the model to small changes in the 
image. Activation layers are also used after each convolution. 

C) Flatten the image and do feature extraction through fully connected layers 
After transformation of the image through convolutions, the data can be reshaped to a 
vector and processed through fully connected layers. 

D) Map to a feature vector for performing the final linear classification 
The final fully connected layer is the feature vector from which linear classification is 
performed. 

E) Connect the feature vector to six individual softmax linear classifiers 
There are six linear classifiers. One to represent the number of digits, and five to 
represent each digit. These result in one-hot encoded vectors of length 11, positions 0-9 
for the actual value of item and 10 if it is blank. 

F) Calculate the total loss for the prediction and do back propagation 
The loss is the sum of the individual softmax cross entropies for each classifier. 

 
My plan was to implement this in TensorFlow and make use of TensorFlow functionality for 
automatically doing the back propagation.  
 
The weights were to be initialised randomly. Training would be done using mini-batches and my 
default optimisation technique was the TensorFlow tf.train.GradientDescentOptimizer with an 
initial learning rate of 0.05 employing exponential decay. 

Benchmark 

The benchmark that I will be using is the performance obtained by GoodFellow et Al [3]. In their 
paper they describe obtaining an accuracy of over 96%.  
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Methodology 

Data Preprocessing 

The first step was to download the source files of the Street View House Number (SVHN) images 
from the Internet. The two files for train and test were obtained from the below URLs: 

● http://ufldl.stanford.edu/housenumbers/train.tar.gz 
● http://ufldl.stanford.edu/housenumbers/test.tar.gz 

 
When extracted, these files each provide a folder with the raw images in PNG format and two 
additional files: 

● digitStruct.mat 
● see_bboxes.m 

 
I used only the digitStruct.mat file. As described on the SVHN Dataset website: 

The digitStruct.mat file contains a struct called digitStruct with the same length as the              
number of original images. Each element in digitStruct has the following fields: name             
which is a string containing the filename of the corresponding image. bbox which is a               
struct array that contains the position, size and label of each digit bounding box in the                
image. Eg: digitStruct(300).bbox(2).height gives height of the 2nd digit bounding box in            
the 300th image 

 
For my purposes, I needed a bounding box around the entire house number and not for each 
digit. I also needed a label dataset for the true house number values of each image. Therefore It 
was necessary for me to extract the data from the digit struct and transform it into a python dict 
that had the image filename as the key and for the value the bounding box for the entire house 
number along with an int representing the true house number itself. 
 
Once I had the bounding boxes and house number labels, I proceeded to converting the raw 
images into a dataset that could be input into the deep convolutional neural network (CNN) for 
training. The steps involved in this conversion are as follows: 

1. Initialise two numpy arrays to hold the images and labels.  
I chose to store each image in an array of dimensions 54 x 54 x 3. I chose 54 since this 
was what was used in the reference implementation by Goodfellow, et Al [3]. The 
dimension 3 represents the RGB colour channels. See the python code below: 

dataset = np.ndarray(shape=(len(image_files), image_size, image_size,  
color_channels), dtype=np.float32) 

labels = np.ndarray(shape=(len(image_files)),dtype=np.int) 

 
2. Read each image into the dataset array and normalise the image data so that the 

values have a zero mean and equal variance 
We do this in order to improve the quality of computations since errors can be introduced 
when combining very small and very large numbers. It also improves the effectiveness of 
the optimisation by reducing the search space for the optimiser. This normalisation is 
done by transforming each value in the image tensor ‘x’ so that it becomes (x-128)/128 
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3. Crop each image and scale each image so that the full house number is in the 
centre and image has length and height 54x54 
I used the information in the bounding box dictionary when doing the cropping.  

4. Generate the corresponding labels array 
At the same time as pre-processing each image I appended the labels array with the 
corresponding true house number value. 

5. Generate statistics of the data after preprocessing 
Results were as below: 

Train Set Stats 

Full Dataset Tensor 33402, 54, 54, 3 

Mean -0.047923665 

Standard Deviation 0.1981962 

 
Test Set Stats 

Full Dataset Tensor 13068, 54, 54, 3 

Mean -0.043531056 

Standard Deviation 0.22369793 

 
6. Pickle the dataset for convenient use later when training 

As part of this, I took out 20% of the training set to use as a validation set during training. 
 
In addition to the raw images in the SVHN dataset, I also created a synthetic set for initial training 
and validation of my CNN design. I generated images using matplotlib. I generated 35,000 
images for training and 15,000 images for testing. For each image I chose a random number of 1 
to 5 digits and randomly varied the font family, colour, style, and rotation. I then put these images 
through the same preprocessing as described above for the raw images.  
 
The statistics of this synthetic image set are below: 

Synthetic Train Set Stats 

Full Dataset Tensor 35000, 54, 54, 3 

Mean 0.43541774 

Standard Deviation 0.21217383 

 
Synthetic Test Set Stats 

Full Dataset Tensor 15000, 54, 54, 3 

Mean 0.43539107 

Standard Deviation 0.21227966 
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Implementation 

General Workflow for Training the Model 
Below is the general workflow I used for implementing the training of my convolutional neural 
network. I implemented a number of helper functions to support these steps. For details, 
please refer to the included IPython notebook ‘SVHN-CNN-Implementation.ipynb’ 
 

● Setup directory and file names for saving log data from the training session 
● Extract the dataset from the pickle file generated during the pre-processing stage 
● Plot example images from the test set 
● Reformat the labels to use one-hot encoding 
● Define the TensorFlow CNN 
● Initialise TensorFlow session 
● Run N optimisation iterations (e.g. N = 5000) 
● Calculate accuracy on test set 
● Print examples of images misclassified by the model 
● Close Tensorflow session 

 
For defining the CNN in TensorFlow I initially used the standard method as described in 
the Udacity Deep Learning assignment. However, I later discovered a library named 
‘Pretty Tensor’[4] and based my implementation on the framework described in the 
tutorial by Hvass Labs [5]. In my explanations below, I lay out the model definition using 
Pretty Tensor. 

Convolutional Neural Network Version 1 

Training on Synthetic Dataset 

For the first version of my CNN I used the synthetic set, since this should be much easier 
than the real dataset and would help me validate that my CNN model was on the right track. 
 
Below are some example images from the synthetic test set after preprocessing. 
 

 
Fig 7: Examples from Synthetic Test Set (After Preprocessing) 
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For version 1 of my CNN I defined a model that had 2 convolutional layers with max 
pooling and ReLU on each. This was followed by 2 fully connected layers and finally 6 
softmax classifiers at the end. One classifier was for predicting the number of digits and 
the remaining 5 were for predicting each of the digits. 
 
The loss function was defined as the sum of the individual losses of each softmax 
classifier. The prediction of the model is a stack of all the individual predictions of each 
softmax classifier. 
 
Please see definition of this model below: 
 

Convolutional Neural Network - Version 1 

    with pt.defaults_scope(activation_fn=tf.nn.relu, phase=phase): 
        network_base = x_pretty.\ 
            conv2d(kernel=5, depth=64, name='layer_conv1', batch_normalize=True).\ 
            max_pool(kernel=2, stride=2).\ 
            conv2d(kernel=5, depth=64, name='layer_conv2').\ 
            max_pool(kernel=2, stride=2).\ 
            flatten().\ 
            fully_connected(size=256, name='layer_fc1').\ 
            fully_connected(size=128, name='layer_fc2') 
        y_pred1, loss1 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,0,:]) 
        y_pred2, loss2 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,1,:]) 
        y_pred3, loss3 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,2,:]) 
        y_pred4, loss4 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,3,:]) 
        y_pred5, loss5 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,4,:]) 
        y_pred6, loss6 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,5,:]) 
        loss = pt.create_composite_loss([loss1,loss2,loss3,loss4,loss5,loss6]) 
        y_pred = tf.pack([y_pred1,y_pred2,y_pred3,y_pred4,y_pred5,y_pred6],axis=1) 

 

 
 
For optimisation in version 1, I made use of the Adagrad optimiser. During some early 
experimenting I compared the Gradient Descent optimiser to the Adagrad optimiser and 
found that Adagrad was faster at minimising loss and was able to achieve a lower level of 
loss over time.  
 
Please see below for the definition of the optimiser for version 1: 
 

optimizer = tf.train.AdagradOptimizer(learning_rate=0.005).minimize(loss, 
                                                                global_step=global_step) 
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 The results I obtained on the synthetic set are shown in the graphs below: 
 

 
Fig 8: Loss and Minibatch Accuracy for Synthetic Dataset Using CNN version 1 

 
 

 
Fig 9: Validation Accuracy for Synthetic Dataset Using CNN Version 1 

 
The accuracy on the test set came to 99.03%.  Below are some examples of the images that 
it misclassified: 
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Fig 10: Examples of Incorrect Synthetic Test Set Predictions from CNN Version 1 

 after 4,000 Optimisation Iterations (99% accuracy on test set) 

 

As we can see, CNN Version 1 performed quite well on the synthetic set. However, this was 
a relatively easy set of data to work with.  
 
Given that the model performed well on the synthetic set, I then went on to using it to train 
on the real Street View House Number dataset. 

Training on Real SVHN Dataset 

Below are some example images from the SVHN Test set after preprocessing. 
 

 
Fig 11: Examples from the SVHN Test Set (After Preprocessing) 
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For training on the real SVHN dataset, I modified the optimiser to use exponential decay on 
the learning rate. Below is the definition of the optimiser. The CNN model remained the 
same as before. 
 

  learning_rate = tf.train.exponential_decay(0.005, global_step, 500, 0.9, staircase=True) 
  

  optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate).minimize(loss, 
  global_step=global_step) 

 
The results I obtained from training on the real SVHN dataset are shown in the graphs 
below: 
 

 
Fig 12: Loss and Minibatch Accuracy for SVHN Dataset using CNN Version 1 

 

 
Fig 13: Validation Accuracy for SVHN Dataset using CNN Version 1 
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As can be seen, the loss and minibatch accuracy on each iteration did well, however the 
validation accuracy failed to get beyond 50% after 20,000 iterations. The best result on the 
validation set was 49.5%.  
 
Similarly the performance on the test set was not good. The best result obtained on the test 
set was 47.28% 
 
Below are some examples of misclassified images from the test set. 
 

 
Fig 14: Examples of Incorrect Predictions from CNN Version 1 on SVHN Test Set 

after 20,000 Optimisation Iterations (47.14% accuracy on test set) 

 

Convolutional Neural Network Version 2 
 
After training CNN version 1 with the SVHN dataset and obtaining poor results, I created 
a version 2 of the CNN. The main changes were: 

● Increased the depth by including 2 additional convolutional layers. 
● Increased number of filters in the convolutional layers 
● Increased the breadth of the fully connected layers 
● Used batch normalisation on all convolutional layers 
● Inserted dropout before each fully connected layer 
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Below is the Pretty Tensor definition on the CNN version 2 
 

Convolutional Neural Network - Version 2 

     with pt.defaults_scope(activation_fn=tf.nn.relu, phase=phase): 
        network_base = x_pretty.\ 
            conv2d(kernel=5, depth=48, name='layer_conv1', batch_normalize=True).\ 
            max_pool(kernel=2, stride=2).\ 
            conv2d(kernel=5, depth=64, name='layer_conv2', batch_normalize=True).\ 
            max_pool(kernel=2, stride=2).\ 
            conv2d(kernel=5, depth=128, name='layer_conv3', batch_normalize=True).\ 
            max_pool(kernel=2, stride=2).\ 
            conv2d(kernel=5, depth=160, name='layer_conv4', batch_normalize=True).\ 
            max_pool(kernel=2, stride=2).\ 
            dropout(0.95).\ 
            flatten().\ 
            fully_connected(size=2048, name='layer_fc1').\ 
            dropout(0.95).\ 
            fully_connected(size=1024, name='layer_fc2') 
        y_pred1, loss1 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,0,:]) 
        y_pred2, loss2 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,1,:]) 
        y_pred3, loss3 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,2,:]) 
        y_pred4, loss4 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,3,:]) 
        y_pred5, loss5 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,4,:]) 
        y_pred6, loss6 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,5,:]) 
        loss = pt.create_composite_loss([loss1,loss2,loss3,loss4,loss5,loss6]) 
        y_pred = tf.pack([y_pred1,y_pred2,y_pred3,y_pred4,y_pred5,y_pred6],axis=1) 

 

 

 
 
Below are the results I obtained on CNN version 2: 
 

 
Fig 15: Loss and Minibatch Accuracy for SVHN dataset using CNN Version 2 
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Fig 16: Validation Accuracy for SVHN Dataset using CNN Version 2 

 

As can be seen, the validation accuracy for CNN version 2 did better than in CNN version 1, 
the best validation accuracy was 65.54%. 

The best test accuracy obtained from this CNN version 2 was 62.77% 

Some examples of incorrectly classified images are below: 
 

 
Fig 17: Examples of Incorrect Predictions from CNN Version 2 on SVHN Test Set 

after 22,000 Optimisation Iterations (62.8% accuracy on test set) 
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Refinement 

Convolutional Neural Network Version 3 
 
In order to refine my model to get better performance, I converted images from RGB to 
grayscale before the first convolutional layer. My theory was that the color channels 
contained redundant information making it more complicated than needed for the 
model to optimise.  
 
See below for the addition of the grayscale conversion. 
 

Convolutional Neural Network - Version 3 

    with pt.defaults_scope(activation_fn=tf.nn.relu, phase=phase): 
        network_base = x_pretty.\ 
            apply(tf.image.rgb_to_grayscale).\ 
            conv2d(kernel=5, depth=48, name='layer_conv1', batch_normalize=True).\ 
            max_pool(kernel=2, stride=2).\ 
            conv2d(kernel=5, depth=64, name='layer_conv2', batch_normalize=True).\ 
            max_pool(kernel=2, stride=2).\ 
            conv2d(kernel=5, depth=128, name='layer_conv3', batch_normalize=True).\ 
            max_pool(kernel=2, stride=2).\ 
            conv2d(kernel=5, depth=160, name='layer_conv4', batch_normalize=True).\ 
            max_pool(kernel=2, stride=2).\ 
            dropout(0.95).\ 
            flatten().\ 
            fully_connected(size=2048, name='layer_fc1').\ 
            dropout(0.95).\ 
            fully_connected(size=1024, name='layer_fc2') 
        y_pred1, loss1 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,0,:]) 
        y_pred2, loss2 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,1,:]) 
        y_pred3, loss3 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,2,:]) 
        y_pred4, loss4 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,3,:]) 
        y_pred5, loss5 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,4,:]) 
        y_pred6, loss6 = network_base.softmax_classifier(class_count=num_labels, 
                                                         labels=y_true[:,5,:]) 
        loss = pt.create_composite_loss([loss1,loss2,loss3,loss4,loss5,loss6]) 
        y_pred = tf.pack([y_pred1,y_pred2,y_pred3,y_pred4,y_pred5,y_pred6],axis=1) 
 

 

I also changed my optimiser from Adgrad to Adam. I considered trying different learning 
rates and exponential decay with Adagrad, however, when I saw that the TensorFlow 
Adam optimiser has a default for the learning rate and all other parameters I reasoned 
that working with these defaults might be better than any guess I might make. Additional 
information on the Adam optimiser can be found at the link below: 
https://arxiv.org/abs/1412.6980 
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Below are results from CNN version 3: 
 

 
Fig 18: Loss and Minibatch Accuracy for SVHN Dataset using CNN Version 3 

 

 
Fig 19: Validation Accuracy for SVHN Dataset using CNN Version 3 

 

 
As can be seen, CNN version 3 performed significantly better with loss getting close to 0 
and minibatch accuracy reaching 100%. For the validation test, the best result obtained 
was 78.28% 
 
The test set also performed significantly better, with the best result being 76.61%. Some 
examples of misclassified images are below. 
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Fig 20: Examples of Incorrect Predictions from CNN Version 3 on SVHN Test Set 

after 65,000 Optimisation Iterations (75.6% accuracy on test set) 
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Results 

Model Evaluation and Validation 
 
My final model achieved an accuracy of 75.6% on the SVHN Test Set.  
 
The overall model for CNN Version 3 follows the general pattern proposed by Goodfellow 
et Al. The optimisations I made, such as converting the images to grayscale contributed 
to simplifying the model. Furthermore, by using max pooling the model is less sensitive 
to small perturbations in the training data. 
 
In order to further validate my model I used it to predict the numbers from some images 
I took outside with my phone. Below are the results. 
 

 
Fig 21: Predictions using CNN Version 3 of Images Taken on My Phone  

 
There are a few noticeable errors, however, in general I would trust the results from my 
CNN Version 3 model if the original image quality were relatively good and cropped to 
show only the house number. 
 

Justification 
 
My CNN version 3 model test set performance of 75.6% is not as good as the 96% 
benchmark by Goodfellow et Al [3] , however the benchmark took 6 days to train on very 
powerful hardware, and given that I was using more limited resources, I believe that this 
represents a decent result. 
 
My solution seems good enough to have solved the problem where the image quality is 
relatively good.  
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Conclusion 

Free-Form Visualization 

 
The two charts below present an interesting story about my results. On the chart on the 
left, we see that the minibatch loss got very close to 0 and the accuracies on the 
minibatches got very close to 100% (in some iterations actually achieving 100). However 
the chart on the right shows the validation set accuracy plateauing at around 75%. 
 
This shows that reducing loss does not always yield better accuracy on unseen data, and 
potentially some regularisation is needed on the network. Also, perhaps the loss function 
could be enhanced to ensure that the weights generalise well to unseen data. 
 

 
Fig 22: Comparison - minibatch vs validation performance 

 

Reflection 
 
This project helped me learn a lot about deep learning, convolutional neural networks 
and TensorFlow.  
 
The preprocessing stage took a significant amount of effort but was a very important part 
of the overall workflow. Building the synthetic dataset proved very useful in validating my 
early versions of the CNN and furthermore, the good results I got at the beginning were 
a great motivation boost. 
 
One thing I learned while implementing this is that memory utilisation needs to be taken 
into consideration when developing a solution. I found myself utilising a high memory 
virtual machine in the cloud in order to execute my scripts. Splitting up the processing 
into smaller batches can help to ensure that memory utilisation is contained. 
 
I also learned that logging is very important. I used Python’s logging function to 
generation csv files from my optimisation runs. I was then able to process this data easily 
in a spreadsheet. 
 
A couple of tricky parts to implementing this arose from the fact that I had 6 classifiers at 
the end of the network instead of 1. Defining the loss and prediction as a composite of 

21 



the results of these 6 classifiers took a bit of effort to get right. Also, defining the 
accuracy function took a bit of time to get right. 
 
Discovering Pretty Tensor and the tutorials on Hvass Labs significantly helped to 
accelerate my ability to experiment with different CNN models. 
 
My expectations for the solution have been met, and it could be used in a general setting 
as long as fairly good quality images are used. 
 

Improvement 
 
Some potential areas of further improvement are below: 

● Using smaller patches (3x3) may yield faster optimisation as recommended in 
Stanford course 231n , lecture 11 

● It could be worth re-designing the loss function, since I observed that loss  was 
able to reduce to almost zero yet the CNN accuracy plateaued. This leads me to 
believe that the current definition of the loss function might not be perfectly 
aligned with the factors that drive accuracy. 

● In the paper by Goodfellow et Al [3] , they mention that adding more layers yields 
better results, therefore adding more layers to my model might yield improved 
accuracy results. 

● Using transfer learning from an existing model (e.g. Google’s Inception model) 
might achieve greater accuracy in less time.   
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