Component Architecture and Toolkit for
Composing Functionally Scalable
Plug-n-Play Web Servers

Daliso Zuze
University College
Oxford

Supervisor: Bernard Sufrin

A Dissertation Submitted in Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE

in the University of Oxford
Computing Laboratory
Trinity, 2005

Abstract

This dissertation reports on our effort to provide software developers a clear
and concise framework with which to assemble web servers. Manifestations
of web servers are now seen in a wide range of applications and appliances,
however, manufacturers have few standard options for assembling and em-
bedding them in their products. Servers like Apache would be overkill for
most application’s requirements. As a result, software developers are left to
build custom servers from scratch. This adds to the development cost of
the original application, conceivably acting as a barrier to their greater use.
With the increased accessibility of network resources, we believe that there
is merit in building a component toolkit for assembling web servers that is
easy to understand and use.

We approached this by examining the processing requirements of HT'TP
requests as defined in the standard specification document. This led to the
discovery of an ontology of components suitable for meeting these require-
ments, but flexible enough to scale functionally to different deployment sce-
narios. In this document we also discuss briefly the concepts relevant to
component driven software design. The Z specification language proved use-
ful in helping us clarify the meaning of the components that we eventually
built.

The outcome of the project was an implementation of the component
framework in the Java 2 Platform Standard Edition (J2SE) version 5.0. To
demonstrate the utility of our toolkit, we present two case studies that involve
the development of an application requiring web services. In each case we
describe the solution that our toolkit avails.

Acknowledgements

I would like to thank my supervisor, Bernard Sufrin, for his enthusiastic
support and well considered advice during the project. I also wish to thank
my family for their continued support and encouragement throughout my
academic endeavours.

This dissertation marks the end of a truly memorable year at Oxford. It
has been a time of intellectual and spiritual growth, made possible by much
appreciated fellowship with my friends at the Computing Lab, at University
College, and around Oxford.

Contents

1 Introductionl
Il.l I!Igzll‘ !i!ligzll is!l i! &&g:lz :ngl yg:I Igzgzll;l‘ll --------------
(1.2 Goals of The Project|
(1.3 Organisation of The Document|

2__Relevant Software Patterns and Architectures|
2.1 Programming Techniques|.
[2.2 Components and Architectures,
[2.2.1 Software Components|.
2.2.2 Software Architectures
2.3 Architecture for Web Servicesl
[2.3.1 Customisation and Extensibility|.
[2.3.2 Concurrency|.
2.4 Summary]

[3 Requirements and Specification|

[3.2 Deployment Requirements
[3.3 Modularity Requirements|
[3.4 Architectural Description Using Zf
[3.4.1 Messages and Connections|
[3.4.2 Infrastructure and Operations|
[3.4.3 System Descriptions|
[3.5 Summary|

[4 Proposed Architecture]
[4.1 ‘Pipe and Filter’ Functional Composition|
(4.2 The Building Blocks|
4.2.1 Essential Components
[4.2.2 Auxiliary Components|

CONTENTS 3
[4.3 Internal Message/Object Types| 48
[4.3.1 Static System Types 48

[4.3.2 Dynamic User Types 48

4.4 The Connectorsl 49
[4.5 Assembly Rules and Patterns 49
[4.5.1 T'he Straight Pipeline Assembly| 50

[4.5.2 Decorated Responders| 50

[4.5.3 Responder Partitioning/ 50

[4.6 Scaling to Higher Degrees ot Concurrency| 50
[4.6.1 Introducing Concurrent Transformers| 51

[4.6.2 Introducing Concurrent Responders| 51

[4.6.3 Introducing Multiple Dispatchers] 52

[4.7 Summary| 52

[Implementation| 54
[>.1 Java Package Overview| 54
[5.2 Class Descriptions|. 63
[>.2.1 ConnectionAggregator| 63

H.2.2 Connectionl 64

[5.2.3 SessionMap|o oo 65

[5.2.4 SmartHashMap| 67

[5.2.5 SimpleSSLDispatcher| 69

[>.2.6 SimpleRouter|00 71

H.2.7 FileAuthoriser|. oL 73

(5.3 Summary| 74
6 Case Studies| 75
6.1 Case I: An Fmbedded Server]o 75
6.1.1 The Requirement| 75

[6.1.2 Proposed Server Assembly| 75

6.1.3 Customisationl. L. 76

[6.1.4 Putting The Components Together{ 76

6.2 Case 2: A Standard Server| L. 79
[6.2.1 The Requirement| 79

[6.2.2 Proposed Server Assembly| 80

0.2.3 Customisationl. L. 80

[6.2.4 Putting The Components Together{ 80

(6.3 Summary] 82
[7__Conclusion and Future Work 83

CONTENTS

[A Application Programming Interface
[A.1 net.zuze.msc.csp|.

[A.5 mnet.zuze.msc.protocols|
[A.6 net.zuze.msc.Exceptions|
[A.7 net.zuze.msc.skeletons

[A.8 mnet.zuze.msc.simpleserver|.o

IB_Contents of The CD)
[B.1 /dissertation|.
B2 /Jsourcecodd

|B.3 fjavadoc|
B.4 /buildl

List of Figures

2.1 A Data Flow Composition| 14
[4.1 Conceptual View of a Dispatcher Component|. 42
[4.2 Conceptual View of a Transformer Component|. 43
[4.3 Conceptual View ot a Responder Component|. 43
[4.4 Conceptual View ot a Deliverer Component| 44
[4.5 A Minimalist Server Assemblyl 44
4.6 A Generic Cachel o000 46
(4.7 An Illustration ot A Connection Aggregator.| 46
4.8 An lllustration of a Router) 47
[4.9 A Typical Feature Stackl 51
[4.10 A More Complex Assembly| 53

Chapter 1

Introduction

1.1 Motivation for a Web Server Toolkit

Web services have traditionally been delivered using heavyweight servers act-
ing as gateways to central applications. This was justified when communica-
tion costs were high and network resources were scarce.

Improvements in network performance and a steady reduction in usage
costs have made network resources available to a wider range of applications
and devices. This class of entities includes mobile devices and simple stand-
alone applications that perform well defined functions. For example, a web
enabled micro controller in your home lighting system could be used to re-
motely switch lights on or off, or to report usage statistics over the past week.
An appointment scheduling application could have a web interface plugged
on to its functions for setting up new appointments or retrieving schedule
information.

The protocols that govern Internet and Web communication have demon-
strated resilience and effectiveness in facilitating the exchange of messages
between disparate systems. We believe that the HT'TP communication stan-
dards can be used effectively by these applications and devices that now
have easier access to physical and wireless networks. Application developers
would benefit from a flexible mechanism for embedding this capability into
their existing applications.

1.2 Goals of The Project

In response to this need, this project aims to develop a component toolkit
that can be used to implement and add web server capabilities onto any piece
of software. The objective is to allow for programmer ease of use, scalability

Chapter 1. Introduction 7

of functionality through functional composition of components, as well as
flexible extensibility of service offerings.

The reference document used to specify the required capabilities of a
standard web server is the official HT'TP /1.1 specification[4]. However, there
are usage scenarios that do not require the HTTP/1.1 specification to be
implemented in its entirety. Mainstream web servers and client software
are obliged to implement the entire specification, but where the protocol
of interaction can be explicitly agreed between clients and servers, a subset
of the specification need only be implemented. Our toolkit will allow for
the creation of standards-compliant servers as well as stripped down servers
tailored to specific needs.

Achievements The main achievement of our project was the design and
implementation of the architecture described in chapter four. Readers who
wish to skip directly to this chapter may do so without loss of any critical
information. However, chapter two provides a background to the relevant
topics that gave insight and influenced our style of approach in the design of
the toolkit, while chapter 3 briefly looks into the HT'TP specification and uses
the Z specification language to provide a basic abstract view of the system
components.

1.3 Organisation of The Document

Chapter 1 Introduction:
Introduces the motivation and objectives of the project

Chapter 2 Relevant Software Patterns and Architectures:
Looks into the existing software engineering architectures and patterns
that are used to develop component software and web servers. This
chapter provides a broad background to the design decisions taken in
our implementation

Chapter 3 Requirements and Specification:
Outlines the particular behavioural features that the envisaged fam-
ily of servers will need to demonstrate and provides a basic high-level
formal specification in Z

Chapter 4 Proposed Architecture:
Provides a high level view of the various components, connectors and
assembly patterns of the developed solution

Chapter 1. Introduction 8

Chapter 5 Implementation:
Describes our implementation in Java of the abstractions and patterns
introduced in Chapter 4.

Chapter 6 Usage Case Studies:
Demonstrates the effectiveness of the implementation using two case
studies

Chapter 7 Conclusion and Future Work:
Summarises the achievements of the project and suggests future work.

Chapter 2

Relevant Software Patterns and
Architectures

The aim of our project was to provide a way for developers to customise and
assemble web servers. The purpose of this chapter is to lay the foundation
for the design decisions that will be expressed in the rest of this document.
The strengths and weaknesses of current and emerging technologies will be
discussed as well as their applicability to the design of web server components.

A principal challenge in software engineering is to design systems that
are flexible enough to evolve over time and/or with changing user require-
ments. It is important to find ways of optimising programmer effort. This
is particularly important if we need to develop a family of related software
products.

Engineering disciplines traditionally deal with this productivity challenge
by producing general purpose components that meet a variety of user needs
based on the way that they have been configured and assembled. Attempts
have been made to apply the same technique to the construction of software
systems. These efforts have affected the way that the computational parts
of a program are organised and the way that software is conceptualised at a
high level.

The following sections provide the relevant background to the design ap-
proach of our web server toolkit.

2.1 Programming Techniques

The principal relevance of this chapter to our project lies in the use of software
components described in the next section. However, it is worth noting that
regarding software reuse and assembly, a number of approaches have been

Chapter 2. Relevant Software Patterns and Architectures 10

taken to improve the utility of software modules at the programmatic level.

The most prevalent modularity technique is Object Orientation, which
promotes the clustering of program functionality into self contained units
called objects. Specialisations of these objects can be defined and used in
different applications to achieve the aims of software reuse. However, experi-
ence has shown that the grouping boundaries imposed by Objects are in fact
not applicable to all situations and the clean separation of concerns often
needs to be violated.

The second technique that we shall mention is Aspect Orientation. This
technique introduces as its focal point the notion of an Aspect, which is a
capability of a system that is achieved by threading together fragments of
pre-existing software modules. Aspect oriented programming overcomes the
rigidity of object orientation and increases the utility of software modules
across a wider range of applications.

The last technique that we shall mention is called Feature Orientation[I].
This is a more user centric approach to software development. It similarly
makes use of code fragments across separate modules, but the emphasis is
more on the definition of product families. With Feature Oriented Program-
ming, products can be defined as the composition of a number of features.
The advantage of this is that end user requirements are more efficiently cap-
tured and fulfilled.

The implementation of our web server toolkit made use of Object Oriented
techniques as we did not discover the need to employ ‘Aspects’ and ‘Features’.

2.2 Components and Architectures

In the previous section, we introduced object-oriented techniques for mod-
ularising software, its limitations and new techniques for dealing with these
limitations. In this section, we will look at the notion of components, how
they relate to objects, and the activities involved in systems architecture.
This section provides a foundation for the concept of building ‘families’ of
software products and how the structure of a system influences the ability
for it to remain relevant over a longer period of time.

2.2.1 Software Components

Software Components are the building blocks of a software architecture. A
component is any static abstraction that defines ‘plugs’ or well defined ways
of communicating with it[I2]. Components are more general than objects.
The main distinction between object orientation and component orientation

Chapter 2. Relevant Software Patterns and Architectures 11

is that object orientation is primarily concerned with partitioning code into
cohesive units and the relationships between these units. Component Ori-
entation on the other hand is concerned with how different high level parts
of the system compose with one another to fulfill a particular set of require-
ments. Szyperski[I5] describes objects as units of instantiation, contrasted
with components which are units of deployment. This distinction is under-
pinned by the fact that components are static and do not have transient
states. Objects, on the other hand, by their very nature are initialised to a
certain state and have their internal representation altered throughout their
life in a program. Moreover, a software component can be represented by any
useful abstraction, or set of abstractions, that can be used in a compositional
way[]

Composition of components can be seen as the manufacturing stage of
software development. Nierstrasz and Dami[I2] define software composition
as “The process of constructing applications by interconnecting software com-
ponents through plugs”.

Through the composition of components, we can generate software fam-
ilies and software product lines. Families and product lines are similar con-
cepts, but there is a subtle difference between the two. We define a software
family as a collection of applications that share a core set of features and
which are constructed using a common set of components. A product line
on the other hand is a set of applications that are targeted for sale to a well
defined market segment.

When designing a software family out of components, it should be possible
to fulfill different requirements by composing the components in different
fashions. Components do however have context dependencies and constraints
that must be respected for a composition to be valid. One such dependency
is a set of Type constraints imposed on the direct communication between
two distinct components. This constraint would require the output data
type of the sender’s message, the data type of the connector transporting the
message and the data type that the receiver expects to receive to all match.

The primary reason for using components is to aid in the reuse of pro-
grammer effort. Based on the non-static nature of a system’s requirements,
component orientation is seen as the most economical way to approach soft-
ware development.

The aim of our project was to build a family of servers, and as such, we
treated components as first class entities while designing our base system.
The process of discovering the ontology of components to use in a family of
products is an iterative one, unless you can determine at first hand all the

!Components could include things like functions, procedures, modules[12]

Chapter 2. Relevant Software Patterns and Architectures 12

usage scenarios. However, in the chapter 3, we propose a set of components
that can accommodate the assembly of any envisaged web server product.

2.2.2 Software Architectures

Software architecture is an activity mostly concerned with structure and the
evolution of a piece of software in the face of changing user requirements.
Software Architecture is the specification of the components of a system and
the communication between them. Architecture deals with the structural
aspects of a system rather than the computational aspects.

The emergence of software architecture is rooted in the discovery of suc-
cessful patterns and styles of deployment. There was no detailed analysis
as a precursor to the discovery of these patterns, they have just consistently
proven to be the most successful in practice.

Work has been done to formalise the field of software architecture through
the formation of languages used to describe them. Architectures described
using these languages can then be analysed for validity and can be used to run
simulations that reveal how a system would fare under different deployment
scenarios.

This section looks into the features of these formalisms. This provides a
basis for the style of specification we use to describe our family of servers in
the next chapter.

Architecture Description Languages

An Architecture Description Language (ADL) is used to specify a software
architecture in a way that allows it to be analysed. This language must
allow for the declaration of components in a system, their topology and the
constraints that the components must respect. In addition to this, an ADL
should allow for properties to be associated with components. Some of these
properties will specify invariants on the components that must not be violated
while others will describe the non-functional requirements that are desired
but not essential in a valid system. The purpose of an ADL is to ensure that
high level design decisions are based on verifiable facts about the behaviour
of systems under precise configuration conditions.

A number of Architecture Description Languages have been developed
that are specific to individual domains. For example Adage is an ADL de-
signed specifically for describing avionics and guidance systems, C2 can be
used for describing User Interfaces and Rapide is a language designed to allow
simulations to be carried out on a system based on its description.

In general, ADLs all support|[0]:

Chapter 2. Relevant Software Patterns and Architectures 13

e the precise definition of components

e multiple component interfaces

e encapsulation of sub-systems as components

e specification and analysis of non-functional requirements

e the definition of constraints on system operation.

Component Ontologies

The architectural design process for a family of systems involves the deter-
mination of the ontology of components that are deemed essential for any
particular implementation. This collection of components forms the “alpha-
bet” that will be used in the composition of instance members of this family
of systems. Architecture description languages, in general, have a common
set of elements which are used in the construction of an architecture[6]. Below
is a description of these elements:

Components as described earlier, represent units of computation and data
stores.

Connectors represent the communication between components. This repre-
sentation is general and could eventually be constrained to a particular
method of communication, such as pipes or procedure calls.

Systems are any configuration of components and connectors. Systems, in
general, can be embedded in other systems forming sub-systems.

Properties provide extra information about the attributes of each compo-
nent and connector, such as the protocol used for a connection or the
rate of processing of a component.

Constraints are special types of properties that must be respected for a
system to be valid.

Styles represent an architectural pattern. This is based on the components
and connectors used as well as the mode of composition. An example
would be a Pipe and Filter system.

Chapter 2. Relevant Software Patterns and Architectures 14

Composition and Assembly

There are different styles that can be employed in the composition and assem-
bly of components. We shall discuss three, namely, functional composition,
blackboard composition and object extension.

Functional composition is the most common form. This involves the en-
capsulation of components as functions having the ability accept components
as parameters[I2]. This style of composition is used in Pipe and Filter as-
semblies such as those used to capture the essence of a data flow application
as shown in figure 2.1 Here composition takes place in the direction of the
arrow flows, i.e. the Supplier and Transformer compose to form a component
that supplies data in the format appropriate for consumption by the User.

Figure 2.1: A Data Flow Composition

Blackboard systems utilise a shared space which all the components in
the system are allowed to write to and read from. The components represent
agents that collaborate to solve a particular problem. The entire blackboard
system can be viewed as the composition of the all the agents working to-
gether to solve the problem at hand.

Object extension is the third kind of composition we shall mention. In this
case the components considered are classes. In object oriented programming,
one is able to create hierarchies of classes. The further one moves down
the hierarchy, the more specialised the classes become. If we define the
capabilities of a class by the public methods that it exposes, then we can say
that each sub-class is its super-class composed with a class containing the
remaining methods found in the sub-class but not the super-class.

An Example of an ADL

We will briefly take a look at the features of an ADL named ACME[G],
under development at Carnegie Mellon University. This ADL was designed
to provide a general way to describe the architecture of any system. Looking
at the way families of systems are defined in ACME will give us a good
reference for our specification in chapter 3 of the components needed in a
family of web servers.

ACME conforms to the general view of ADLs described above and in par-
ticular allows system designers to specify a system according to the following
factors:

Chapter 2. Relevant Software Patterns and Architectures 15

Structure - How the components and connectors are organised

Properties of Interest - Information about the parts of the system that
can be useful in reasoning about its overall behaviour

Constraints - Properties that ultimately determine the set of valid system
configurations

Types and Styles - The definition of architectural patterns

In an ACME system description, the main types of entities described are
components and connectors. A system is defined as a graph in which the
nodes represent components and the arcs represent connectors. Each system
can contain sub-systems, which would be the internal representation of a
component. An example[6] of a simple client server system defined in ACME
is shown below:

-~

System simple_cs =
Component client = { Port sendRequest }
Component server = { Port receiveRequest }
Connector rpc { Roles {caller, callee} }
Attachments : {

client.sendRequest to rpc.caller ;
server.receiveRequest to rpc.callee }

Ports identify points of interaction of a component with its environment
while Roles identify the way a connector interfaces with its environment.
The attachments define the topology of the system by identifying the way
components and connectors are attached to each other.

Acme defines Properties as extra information about the parts of a system
that can aid in the analysis of a system configuration. This information has
nothing to do with the structure of the system and hence is ignored by the
Acme compiler. However, this information can be used by tools that simulate
the overall performance of a system, such as a tool to measure expected
throughput. As an example, a client component could be annotated with
the following property:

Component client = {

Port sendRequest;

Properties { requestRate : float = 17.0;}
}

Chapter 2. Relevant Software Patterns and Architectures 16

Constraints are similar to properties but are used to describe values that
set boundaries on the set of valid configurations that a system can be trans-
formed into. These constraints are expressed as predicates over any aspect
of the design specification. In Acme, constraints fall into two categories:
Invariants and Heuristics. Invariants cannot be violated in a valid system
while Heuristics are desired properties but not essential. Constraints may
also make use of various functions that evaluate the truth of certain proper-
ties of the architecture or return sets of architectural entities. For example
connected(compl, comp2) evaluates to true if there is a connector joining
compl and comp2, and SystemName.Connectors returns the set of connec-
tors in system SystemName.

Types and Styles are used to create templates for system elements and
configuration patterns that have been found to reoccur. For example, a
template for a Client component could be described as follows:

Component Type Client = {
Port Request = {Property protocol: CSPprotocolT};
Property request-rate: Float;
Invariant Forall p in self.Ports @ p.protocol = rpc-client;
Invariant size(self.Ports) <= 5;
Invariant request-rate >= 0;
Heuristic request-rate > 100;

Instances of the above Type would automatically inherit all Client’s proper-
ties and constraints. In addition to Types, Acme allows for the definition of
families, which are a collection of Types that are valid in a particular set of
Architectures. An Acme family consists of a set of property and structural
types, a set of constraints and a default structure. The property and struc-
tural types determine what can be used in the family and the constraints
determine how they can be used. The default structure determines the most
basic configuration that is possible for an instance of the family.

The ACME ADL described above provided insight into the issues relevant
to architectural design. It also gave us some basic guidance in our use of the
7 language in chapter 3, where we describe abstractly our envisaged family
of web servers.

Chapter 2. Relevant Software Patterns and Architectures 17

2.3 Architecture for Web Services

In this section, we look into two aspects of a web server architecture that
were pertinent to our project. Firstly, we discuss opportunities for user
customisation of a web server application, and secondly, we discuss techniques
used to deal with varying scales of concurrency in a web server application.
Since our objective was to build a family of servers configurable to varying
deployment scenarios, the component framework that we developed needed
to deal with these two aspects.

2.3.1 Customisation and Extensibility

We consider customisation as the ability to add, remove or change the types
of requests serviced within a particular application. In our discussion, we
examine the mechanisms used in the Apache web server that allow for the
server functionality to be customised.

The Apache web server allows for its configuration through the use of
configuration files that control aspects such as mime types, virtual hosts,
etc, and through the writing and dynamic inclusion of custom built server
modules.

The Apache web server processes requests according to a series of prede-
fined and static stages that are executed sequentially by a request processor.
A minimal implementation of all these stages is contained in a single com-
ponent called the server Core. In addition to the Core, the server comprises
a collection of modules, each providing handlers to process data pertaining
to predefined request processing stages. These module handlers are invoked
by way of implicit invocation from the server’s request processor.

If a user of the system wishes to make use of a module, it must be reg-
istered with the server using special directives in a configuration file. The
module can either be compiled into the server using configuration and make
utilities, or the module can be loaded dynamically when the server is started.
More than one module can contain handlers for the same stage of processing,
however, precedence is given to AddModule directives that appear later in the
configuration file.

The stages of processing defined by the Apache server are the following:

@® Post-Read occurs after the headers have been read and the request is
checked to be a valid HT'TP request

@ URI Translation does the job of converting a URI to an internally
usable filename path

Chapter 2. Relevant Software Patterns and Architectures 18

@ Header Parsing allows any number of filters to modify the request
headers

@ Access Control checks whether or not the URI requested is allowed

® Authentication checks whether the user is who he/she claims to be
(checks password)

® Authorisation checks whether or not the user is allowed to access the
URI

@ Type Checking determines the type of the response’s content so that
the correct content handler will be called

Content Handling generates the response
® Fixups modify the response before it is shipped to a client
® Logging keeps a record of server activity

Certain stages allow for the invocation of multiple handlers, such as au-
thentication, whereas others will allow only one of the declared handlers to
execute. The former are said to execute inclusively and the later exclusively.
Whenever a handler is called to handle a stage, it will return an int value
status code. These codes correspond to OK, Declined and Done. OK means
that the processing completed successfully, Decline means that the handler
will not handle the request and Done means that processing completed and
no further handlers should be invoked.

In summary, the Apache server’s architecture allows for extensibility in
the way the server deals with particular stages. End users can write their
own handlers and arrange for these to be loaded dynamically and invoked by
the request processor at the appropriate time, however, the processing stages
remain static and cannot be altered by the end user.

2.3.2 Concurrency

We are interested in the ability of a server application to accommodate a
high number of concurrent users. We would like to investigate architectural
patterns that can be used to achieve this. In this section we investigate
several approaches taken to this problem by different server implementations.

Firstly, we look at the approach taken by the Apache server. Apache
copes with the need for concurrency by creating replicas of the entire re-
quest/response processing mechanism. On Unix platforms this is achieved

Chapter 2. Relevant Software Patterns and Architectures 19

by having a set number of child processes running, all of which are allocated
connections from a single queue. In this case, each instance of the server has
its own private address space. On Windows, Apache makes use of Multi-
threading of server instances to achieve concurrency. In this case there exists
a shared memory space between all the threads.

Another approach to concurrency taken by the Flash web server[14] is the
use of what is called an Asymmetric Multi-Process Event Driven Architecture
AMPED. This approach overcomes the overhead of context switching by
using a single thread that is responsible for executing a series of stages in the
processing of a request. In the event of increased server demand, the event
thread will accommodate the processing of all the requests by interleaving the
processing of the individual server stages. This in effect simulates multiple
threads but retains more control over the sharing of computer resources.
The Flash Server makes use of mechanisms to simulate non-blocking I/0 to
ensure that the server does not become idle during times of slow 1/O such
as disk activity.

A third approach to dealing with concurrency draws from both the multi-
process/multi-threaded and event driven architectures. The Staged Event
Driven Architecture (SEDA), is designed to cope with massive concurrency
and simplify the construction of well-conditioned services[16]. Well-conditioned
means that as load increases beyond the capacity of the server, the perfor-
mance degrades linearly and the performance loss is distributed fairly be-
tween the current tasks being executed.

A SEDA architecture consists of a network of stages that are joined by
explicit event queues. A stage can be described as a self-contained component
consisting of an event handler, an incoming event queue and a thread pool.
Each stage is managed by a controller that consumes a batch of tasks from
the event queue and distributes these among the available event handler
threads.

Multi-threading in SEDA is done at the stage level and this allows for
greater control in fine tuning the performance of the server. The controller
is capable of making adjustments to the rate of processing by controlling the
number of threads in a stage or the number of tasks consumed from the queue
in a cycle. The use of event queues to separate the stages leads to greater
decoupling with the execution of threads constrained to a single component.
This, in turn, allows for better performance analysis of the processing pipeline
and provides opportunity for self-tuning at each stage. As with AMPED,
SEDA makes use of non-blocking I/O operations to remove unpredictable
latency. In addition to improved load conditioning, SEDA presents a highly
intelligible structure that aids in ease of programming.

The ideas presented by SEDA | particularly the use of self-contained stages,

Chapter 2. Relevant Software Patterns and Architectures 20

greatly influenced the design of our family of servers.

2.4 Summary

In this chapter, we provided a background to the design factors important
in the building of our family of web servers. We began by discussing the
techniques used in software development to achieve modularity and reuse of
code, we then went on to look at the concept of building software through
the composition of general purpose components. We demonstrated how high
level architectural abstractions are used to tie all the pieces together and
we discussed the formalisms used to describe these architectures. Finally, we
briefly surveyed architectural features found in mainstream and experimental
web servers. The next chapter will begin the formal conceptualisation of our
server design.

Chapter 3

Requirements and Specification

This chapter presents the functional requirements of the servers we expect to
build with our component toolkit. We also provide a basic abstract architec-
tural description of the envisaged components codified in the Z specification
language.

The basis of our requirements are detailed in the HT'TP /1.1 specification[4].
This chapter does not attempt to reproduce the entire specification, but out-
line the important parts that were most relevant to our design decisions.
Following this, the toolkit requirements are discussed together with a set
of sample usage scenarios that illustrate the extent of flexibility required of
the implementation. Finally, we formalise the requirements and constraints
using Z and provide a high level specification of the system components.

3.1 The HTTP Protocol

The HTTP protocol was designed to be resilient to problems with data trans-
mission and is thus a stateless protocol. This means that each request mes-
sage contains within it all the information that the server needs to generate
an appropriate response message. These messages are sent as byte streams
between a client application and a server application. A message is one of
the following two types:

Request. This is a message sent from a client to a server. These messages
follow the following format:

<method> <request-URL> <version>
<headers>

<entity-body>

21

Chapter 3. Requirements and Specification 22

Response This is a message sent from a server to a client. These messages
follow the following format:

<version> <status> <reason-phrase>
<headers>

<entity-body>
A brief description of each part of the message is provided below:

e method refers to one of GET, PUT, DELETE, POST, HEAD, TRACE, OPTIONS
and CONNECT. These are the standard operations that a client can re-
quest a server to perform. The most commonly used methods are GET
and POST. A GET method requires the server to send back a Response
containing the contents of the resource referred to by the request-URL.
A POST method will request the server to execute some operation
referred to in the request-URL. The information from the Request’s
entity-body is provided as input to this operation.

e request-URL is the unique name of the resource that the method should
be applied to.

e version is the HTTP specification version to which the message format
conforms.

e status is the three digit code that indicates the outcome of the requested
action.

e reason-phrase is the human readable version of the status code.

e headers are the collection of (property name, value) pairs that provide
extra information about the message. For example, there are headers
that describe the length of the message’s content and provide authenti-
cation information for a Request. For a complete list of all the header
types, please refer to the HTTP /1.1 specification document [4]

e entity-body is data that represents ‘input’ if present in a Request and
‘output’ if present in a Response. It could comprise of form data, html
pages, or any data file.

Chapter 3. Requirements and Specification 23

An example of an HTTP Request is shown below:

GET /docs/ HTTP/1.1

Host: localhost:81

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.7.10)

Gecko/20050717 Firefox/1.0.6

Accept: text/zml,application/xml,application/xhtml+xml,text/html;
g=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-gb,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,*;9=0.7

Keep-Alive: 300

Connection: keep-alive

An example of an HTTP Response is shown Below:

HTTP/1.1 200 OK

Date: Sat, 20 Aug 2005 18:06:02 GMT

Content-length: 276

Server: Daliso’s Experimetal Server Codename: Cheetah 0.9
Keep-Alive: timeout=5

Cache-Control: max-age=0

Accept-Ranges: bytes

Connection: Keep-Alive

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html; charset=IS0-8859-1"
http-equiv="content-type">
<title>test.html</title>
</head>
<body>
Hello
World
</body>
</html>

3.1.1 Persistent Connections

The protocol of behaviour for both clients and servers is covered extensively
in the HTTP/1.1 specification[4]. In this section we discuss one particular
requirement pertaining to persistent connections, as it played a significant
role in the design of our server architecture.

A connection in the context of our discussion can be described as the
virtual ‘wire’ through which the client application and the server application

Chapter 3. Requirements and Specification 24

communicate. The first step in any client-server interaction is the establish-
ment of a connection.

There are two ways that a client and a server can make use of connections.
In the first scenario, a new connection is established for each individual re-
quest that is issued by the client. In the second, multiple requests are sent
by the client through a single connection. The client is permitted to send re-
quests through the connection without waiting for responses from previously
sent requests. This is known as pipelining. A connection used in the second
way is called a persistent connection. Since there is an overhead involved in
the establishment of a connection, and since web pages often contain many
linked images, the use of persistent connections can drastically improve the
efficiency of the protocol.

The specification stipulates that both the client and the server can assume
that all new connections will be persistent. Connections remain open until
either the client indicates that it will send no additional requests through a
connection or the server indicates that it will accept no additional requests
through a connection. The client inserts a header ‘Connection:Close’ on
the last request it intends to send and the server issues the same header on
the last response that it will send through a particular connection.

The specification also requires that all messages include a content-length
header that indicates the length of the data in the entity body. This is par-
ticularly important for responses since there would otherwise be no way of
determining the end point of one message and the start of the next message.

Regarding the pipelining of messages, the server is required to ensure that
responses for pipelined requests are returned in the same order that they
were requested. Client applications that pipeline requests before they are
certain of a persistent connection must be prepared to have the connection
closed unexpectedly. If a connection does close while requests are being
pipelined, the client should reopen a new connection but first confirm that the
connection is persistent before pipelining. In addition to this, clients should
not pipeline requests containing methods that are non-idempotent (such as
POST). Finally, the HTTP/1.1 specification also states that a client may
open more than one pipelined connection to a server, but should normally
not maintain more than two open connections at any one time.

3.2 Deployment Requirements

This brief section will look at the range of implementation uses that our
toolkit will enable its users to satisfy.

Chapter 3. Requirements and Specification 25

Embedded in Host Application In this scenario, developers using the
toolkit will be able to add a web interface to any existing application by
including our library of standard classes and simply providing a custom im-
plementation of the class that will translate requests to internal system oper-
ations and translate the results of those operations into a response sent back
to the web client. In this scenario, the developer may determine that part of
the HTTP specification is not required and configure the server infrastructure
to meet the particular requirements at hand.
As an example, consider the following:

A stand-alone application for quoting the cost of translating documents
has the ability to count the number of words in a plain text file. An applica-
tion developer would like to design a web based front end to this application
which accepts documents uploaded in a POST request and generates an HTML
page containing the quotation as its response. This application is unlikely to
need to accommodate many concurrent users or require the use of caching.
In addition to this, if we know that the only method being requested is POST,
we do not need to worry about implementing special behaviour of the server
in response to the other methods. Our toolkit would allow the application
developer to add on this functionality with the inclusion of a few classes and
the custom implementation of a few methods.

Standards-Compliant Stand-Alone Server In this scenario, the server
is composed of components configured to ensure that the server will respond
appropriately to any standards-compliant web client. The implementer will
be able to configure the server infrastructure to cope with the expected con-
currency demands that will be placed on it.

3.3 Modularity Requirements

One of the main goals of our project was to achieve enhanced ease of pro-
gramming in the construction of any web server. To meet this goal, we
required a highly intelligible way of modularising the system. To this end
we state one of the system requirements as “A flexible and extensible mes-
sage processing workflow”. In addition to this, we define major stages in the
system as comprising of:

e Accepting connections from clients

e Transforming streamed data into system manipulatable objects

Chapter 3. Requirements and Specification 26

Determining Security Authorisation of a Request

e Servicing a Request by Generating a Response

Decoration of Messages for Maintenance of State, Presentation, etc

Caching Services

Delivering the Response to the Client

3.4 Architectural Description Using Z

This section provides a high level description of the different parts that make
up our server toolkit and the relationships between them. We begin by look-
ing at the definitions of the messages that flow through the system. We then
examine the connectors and components, and describe the operations that
can be performed on them. Finally, we describe an instance of a complete
system.

3.4.1 Messages and Connections

A Message is an abstraction of the Requests and Responses that flow inter-
nally in the system. The Z schema for a message is shown below. We have
first introduced a type named Byte that represents a Byte of raw data.

[Byte]

__ Message
headers : seq CHAR —+ seq CHAR
entityBody : seq Byte
version : seq CHAR

version = “HTTP/1.1"
#entityBody > 0 = “Content — length” € dom headers

The Message has a mapping of headers, which represents a (key,value)
pair. It also contains an entityBody, which is the ‘payload’ of the message,
comprising input or output data. A message is also associated with a par-
ticular HTTP version. We have decided to constrain our family of servers
to HTTP/1.1 compliance. A message that contains data in its entity body
must also declare the length of the data as one of its headers.

Chapter 3. Requirements and Specification 27

A Request is a type of message that also has a method, denoting the
command the server should perform, and a requestURL, denoting the re-
source that the method should be applied to.

__ Request
Message
method : seq CHAR
requestURL : seq CHAR

method € { GET, POST, PUT, DELETE, OPTIONS,
HEAD, TRACE, CONNECT, ERROR, CHALLENGE}

Below are two special extensions of the Request definition introduced to
simplify the flow of messages in the system. A Request, on its way to being
serviced, can be transformed into an Error if something goes wrong, or a
Challenge if authentication fails. Their definitions are shown below.

__ ErrorRequest
Request

method = “ERROR"
“CLIENT_TEXT" € dom headers
“ERROR_TYPE" € dom headers

— ChallengeRequest
Request

method = “CHALLENGE"
“REALM" € dom headers
“MESSAGE" € dom headers
“AUTH_TYPE" € dom headers

For the purpose of defining a Response, we need to define a free type,
Digit, as follows:

Digit =:=0|1]2]3|4|5|6]|7]8]|9
A Response is a type of message that also contains a status, comprising

three digits, and a reasonPhrase, that is a human readable interpretation of
the status.

Chapter 3. Requirements and Specification 28

— Response
Message
status : seq Digit

reasonPhrase : seq CHAR

#status = 3

A Connection represents the ‘virtual wire’ between the client and the
server. An IpAddress represents any node on the Internet. Below is the
definition of a Connection followed by operations for initialising, closing and
using a connection.

[IpAddress|

Connection
source : IpAddress
open : true | false
portnum : N

__ ConnectionInit

Connection’

pnum? : N
src? . IpAddress

source’ = src?
portnum’ = pnum?
open’ = true

_ CloseConnection
A Connection

open = true

open’ = false

source = source’
portnum = portnum’

__SendData
=Connection
dataToClient? : seq Byte

open = true

Chapter 3. Requirements and Specification 29

__ ReceiveData
=Connection
dataFromClient! : seq Byte

open = true

3.4.2 Infrastructure and Operations

We shall now describe some of the infrastructure for our component assembly,
including the operations that can be performed on each of the entities.

Firstly, we will describe the core of our connectors, which is a buffer that
can store a variable number of messages. Below is the generic definition of
a message buffer, an initialisation schema, and operations for reading and
writing data to it.

— Buffer[MSG]
items : seq MSG
max : N

#items < max

— BufferInit[MSG]

Buffer’

max? : N
items’ = ()
maz’ = max?

— Read[X]
A Buffer[X]
data! : X

items # ()
items = (data!) ™ items’
max = maz’

Chapter 3. Requirements and Specification 30

— Write[X]
A Buffer[X]
data? : X

#items < mazx
items’ = items ™ (data?)
maz = max’

Another fundamental concept in our infrastructure is that of a Port. A
Port represents any interface that a component or connector has with its
environment. Ports in our architecture must be typed, and therefore we
have provided a global generic definition of a Port below.

[:[P)?’r’t X

Also required in our definitions of components and connectors is the con-
cept of Null, defined globally below.

TE\)/((}]LL X

Connectors There are two types of connectors that can be used to link
components. The first one, an Asynchronous connector, shown below,
allows for a number of messages to be buffered and thus allows more than
one write to occur before a read and vice versa, depending on the condition
of the buffer. This helps to decouple a fast writer from a potentially slow
reader.

— AsynchronousConnector| X]|
Buffer[X]
size 1 N
in : Port[X]; out : Port[X]

maxr = size

A Synchronous connector has all the properties of an asynchronous
connector but with the size of the buffer constrained to one. This type of
connector can be used when the reader is guaranteed to operate at least as
fast as the writer. It ensures that both reader and writer rendez-vous at each
step of processing that involves input or output.

Chapter 3. Requirements and Specification 31

— SynchronousConnector[X]
AsynchronousConnector

size = 1

Below are schema definitions for writing to and reading from a connector:

— Connector Write| X|
A AsynchronousConnector| X]|

mn?: X
in? = in # NULL[X]
in’ = NULL[X]

#items < max
items’ = items ™ (in)
maz = maz’

out = out’

— ConnectorRead | X |
AAsynchronousConnector|X]

out! : X
out = NULL[X]
items # ()

items = (out’) ™ items’
max = maz’
m = i’

out! = out’

Please note that the above definitions do not model the temporal behav-
iour of a synchronous connector. It would not be practical in Z to attempt
to model the process of the connector waiting when either a reader or a
writer is unavailable to enable the operation to succeed. The above provides
a snapshot of what a successful operation would look like.

Components In our system, components represent active objects that can
be started and stopped. Therefore, we define a component state as follows:

Component
Tstarted : true | false

Chapter 3. Requirements and Specification 32

— StartComponent
A Component

started = false
started’ = true

__StopComponent
A Component

started’ = false
started = true

A generic Producer is a kind of a Component that has a typed output
interface with its environment as shown below:

Producer|X|
Component
out : Port[X]

A Consumer is a Component that has a typed input interface with its
environment:

Consumer[X]
Component
in : Port[X]

There are kinds of components that have both input and output inter-
faces. These components effectively convert from one type of message to
another. The generic definition of a Converter models these kinds of compo-
nents as shown below.

Converter[X, Y]

Consumer[X]
Producer|[Y]

Some components will not perform any change to the static type of a
message as it passes through it. This is an Identity component and is defined
below.

Identity| X|
Converter| X, X]|

Chapter 3. Requirements and Specification 33

We can now move on to some specific examples of the component types
that we have described above. Our architecture will comprise a set of com-
ponents each carrying out a specific task in the chain of processing required
to service a Request.

The first kind of component that we shall look at is named a Dispatcher.
This kind of component is a Producer since, from the point of view of the
system, it is the component that originates all work in the pipeline.

_ DispatcherState
Producer[Connection]
conn : seq Connection

0 < #conn <1

__ DispatcherInit
Dispatcher’

started’ = true
out’ = NULL|Connection]
conn' = ()

__ AcceptConn
A Dispatcher
newconn? : Connection

started = true = started’
conn' = (newconn?)
conn = ()
out = out’

__ DispatcherOutput
A Dispatcher
out! : Connection

started = true = started’
out = NULL[Connection]

conn # ()
conn' = ()
out! = out’ = head conn

Chapter 3. Requirements and Specification 34

We define a Dispatcher component as the composition of the operation
that accepts new connections and the operation that sends connections to
the environment.

Dispatcher = AcceptConn § DispatcherOQutput

The next kind of component that can exist in an assembly is named a
Transformer. This component conceptually converts Connections to Re-
quests.

TransformerState
Converter|Connection, Request]
requests : seq; Request

con2reqs : Connection + seq; Request

_ TransformerInit
Transformer’

started’ = true
requests’ = ()
in’ = NULL[Connection)]
out’ = NULL|[Message]

Below is the definition of the operation of the Transformer that actually
generates the Requests from the Connection. Note that the Transformer
is always expected to produce at least one Request. The MakeRequests
operation could generate a sequence of all normal Requests or a sequence
where the last Request is an Error Requesiﬂ.

_ MakeRequests
A Transformer
in? . Connection

started = true = started’

in? = in # NULL[Connection]
in’ = NULL[Connection]
requests = ()

requests’ = con2reqs(in)

out = out’

1See page 27| for details of an Error Request

Chapter 3. Requirements and Specification 35

— TransformerQOutput
A Transformer
out! : Request

started = true = started’
out = NULL[Message]
requests # ()
requests = (out’) ™ requests’
in = in’
out! = out’

Transformer = MakeRequest § TransformerQOutput

An Authoriser is a component in our framework that inputs and outputs
requests and is thus classified as an Identity.

AuthoriserState

Identity| Request|
doneRequest : Request
reqMap : Request + Request

_ AuthoriserInit
Authoriser’

in’ = NULL[Message]

out’ = NULL|[Message]

started’ = true

doneRequest’ = NULL[Message]

The DoAuthorise operation below generates the appropriate Request from
the input. This generated Request could be the original Request, an Error
Request or a Challenge Request.

Chapter 3. Requirements and Specification

36

_ DoAuthorise

A Authoriser
in? : Request

started = true = started’
in? = in # NULL[Message]
in’ = NULL[Message]
doneRequest = NULL[Message]
doneRequest’ = reqMap(in)
out = out’

The Output operation below transfers the generated Request to the out-

put port.
_ Authoriser Output

A Authoriser
out! : Request

started = true = started’

out = NULL[Message]
doneRequest # NULL[Message]
out! = out’ = doneRequest
doneRequest’ = NULL[Message]
in = in/

Authoriser = DoAuthorise § AuthoriserOutput

A Responder component actually performs the servicing of the Request

and is classified as a Converter from Request to Response.

__ ResponderState

Converter|Request, Response]
doneResponse : Response
rspMap : Request + Response

__ ResponderInit

Responder’

in’ = NULL[Message]
out’ = NULL[Message]
started’ = true
doneResponse’ = NULL[Message]

Chapter 3. Requirements and Specification

37

— DoRespond
A Responder
in? : Request

started = true = started’

in? = in # NULL[Message]

in’ = NULL[Message]
doneResponse = NULL[Message]
doneResponse’ = rspMap(in)
out = out’

— ResponderOutput

A Responder
out! : Response

started = true = started’
out = NULL[Message]
doneResponse # NULL[Message]
out! = out’ = doneResponse
doneResponse’ = NULL[Message]
in =1n’

Responder = DoRespond § ResponderOutput

A Deliverer, from the point of view of the system, is a Consumer. It
is a sink for all Responses produced in the system. The Deliverer interfaces
with the network via the operating system to arrange for the delivery of the

Response data back to the client.

DelivererState

Consumer[Response]
byteMap : Response -+ seq Byte

__ DelivererInit

Deliverer’

in’ = NULL[Message]
started’” = true

Chapter 3. Requirements and Specification 38

__DoDeliver
A Deliverer
dataToClient! : seq Byte
in? : Response

started = true = started’

in? = in # NULL[Message]
in’ = NULL[Message]
dataToClient! = byteMap(in)

Deliverer = DoDeliver

Proxies are often deployed in networks in order to improve their per-
formance. A Proxy component is one that is authorised to act on behalf
of another. From the point of view of a client, a Proxy acts on behalf of a
Converter. From the point of view of the Converter, the Proxy acts on behalf
of the client. Therefore, a Proxy has four interfaces as defined in the schema
below.

Prozy[X, Y]
Converter[X, Y]
subOut : Port[X]
subIn : Port[Y]

A Cache is a construct that is used to store a mapping of character
sequence (keys) to Response.

_ Cache
Mayp : seq CHAR ~ Response

m: # dom Map
3f : Request + seq CHARe
Vz € dom Map e 31 : Request @ x = f(r)

_ Cachelnit
Cache’

domMap' = ()

Having defined the concepts of Proxies and Caches, we can easily describe
a CachedProxy as a Proxy that has a Cache, as in the schema below.

Chapter 3. Requirements and Specification 39

CachedProxy

Prozy[Request, Response]
theCache : Cache

— CachedProxylnit
CachedProxy’
Cachelnit

started’ = true
in' = out’ = subln' = subOut’ = NULL[Message]

3.4.3 System Descriptions

Now that we have defined all the constituent parts of a family of servers, we
can use a schema notation to define any particular architecture. Below is an
example of a server assembly:

__System
Dy, Dy : Dispatcher
T : P Transformer
R : Responder
C1 : SynchronousConnector|Connection)
Cy : ASynchronousConnector|Request]
Cs : SynchronousConnector|Response]
W : Deliverer

Vte TeD > Cilin/out, out/in] >t

A Dy > Cilin/out, out/in] >t

Vite Tet>> Cylin/out,out/in] > R
R > Cs[in/out, out/in] > W

The above schema declares the collection of components and connectors
that comprise this particular system. The constraint part of the schema
states that the connector (Cj) links the two Dispatchers to all the Trans-
formers. It states that the second connector (Cy) links all Transformers to a
Responder and the third connector (Cs) links the Responder to the Deliverer.

Chapter 3. Requirements and Specification 40

3.5 Summary

In this chapter we looked at the rules that governed the design of our frame-
work and toolkit for web server construction. We began by highlighting
the most relevant parts of the HTTP/1.1 specification. We then went on
to look at some desirable functional and non-functional requirements of the
envisaged server toolkit by looking at deployment scenarios and desirable
modularity aspects. Finally, we used the Z specification language to give a
basic abstract description of the server components and the constraints on
them. The Z definitions served to help us refine our concepts of the necessary
objects and components in the system.

In the next chapter, we provide a concrete description of the server archi-
tecture that we ultimately implemented. Chapter 5 will go further to detail
the constructs used in the Java™ programming language.

Chapter 4

Proposed Architecture

In this chapter, we explain the architectural style that we have used to address
the requirements of the previous chapter. Following this structural paradigm,
the components of the system will be built and the rules for their assembly
formulated.

4.1 ‘Pipe and Filter’ Functional Composition

The nature of the Request-Response message passing communication style
combined with the provisions within the HTTP specification that cater for
the inherent statelessness of web communication, suggest that a Unix style
‘pipe and filter’ approach to component assembly would be most appropriate.
This approach exhibits the following characteristics:

e The filters can be treated as black boxes facilitating loose coupling and
separation of concerns

e Each filter item is implemented as a separate process and can easily be
distributed to separate processors

e composition of filters can take place “horizontally” and “vertically”.
i.e. high level workflow stages compose horizontally while ‘enhanced
filters’ can be constructed by vertically passing and receiving messages
from subordinate filters

e It is well suited to problems that can be decomposed into a series of
sequential steps

Analysis of the HTTP protocol and the requirements on the part of a server in
the servicing of requests suggests that the work of a server can be segmented

41

Chapter 4. Proposed Architecture 42

into a series of steps, transforming a request object stage by stage into a
response object suitable for delivery back to the client. This inherent chain
of responsibility, as described by Gamma et al [5], enables the loose coupling
of the parts of the server and their dynamic configuration at run time.

4.2 The Building Blocks

This section looks at the main components needed in the servicing of HT'TP
web requests. The components have been divided into the essential ones
needed to build a minimalist server and those that, in concert with the es-
sential components, add richer functionality

4.2.1 Essential Components

1. Dispatcher

This component interfaces with the host operating system’s sockets on
a specific port and continually accepts client connections. These sockets
are encapsulated into internal system objects named Connections which
are passed down a channel to the next stage in the servicing pipeline.
A graphical representation of this component is shown in figure 4.1

 Network /

Ve N
: o O O
Socket connection requests Dispatcher < v Y
N| Internal Connection Objects
Objects representing client (Connection type channel) >

Connections produced.

Figure 4.1: Conceptual View of a Dispatcher Component

2. Transformer

This component maps Connection — Request. It accepts Connection
objects on its input port and produces “packetised” Request objects
on its output port. (For details of message types, see section on
page @) The Transformer reads the data stream from the client via
the Connection object and builds up successive object representations
of HTTP requests. The HTTP/1.1 specification allows for a client to
pipeline multiple requests through a single connectionﬂ therefore each

'For information about pipelining, see section on page

Chapter 4. Proposed Architecture 43

Connection object input to the Transformer component can result in
one or more Request objects being generated on its output port. The
maximum number of requests that a transformer will accept through
a single connection is a parameter of a specific implementation. A
Transformer must also protect itself from idle connections and ‘bail
out’ if no data is detected coming through the socket. A graphical
representation of this component is shown in figure
- il
e o0 | | 9] o8] 9

o Internal Connection Objects Request Packet Objects '
(Connection type channel) Data from Connections are read into (Packet<Request> channel)
Request Objects

Transformer

_)

Figure 4.2: Conceptual View of a Transformer Component

3. Responder

This kind of component is responsible for mapping Request — Response.
By examining the METHOD, URI and other Request parameters, the
Responder generates a Response object, which is packetised and sent
on for further processing through the pipeline. Ideally, for the sake of
modularity, a Responder is normally designed to handle a very specific
type of Request, such as a request to serve a file or execute a query.

Request Connection Packet Response Connection Packet

) Ve N |
®0| [09] [00 ®0 00
o R t Packet Object ' Responder R Packet Object: '
equest Packe jects esponse Packe! jects
(Packet<Request> channel) Requests are examined and used to (Packet<Response> channel)
generate Responses
AN J

Figure 4.3: Conceptual View of a Responder Component

4. Deliverer

The last essential kind of component in a server assembly is a De-
liverer. A Deliverer takes Response packets of any kind and streams
the responses back to the client using the connection object contained
within the packet. This component is the last to process any data re-
sulting from a request-response interaction with a client. A graphical
representation of this component is shown in figure [£.4]

In summary, a complete version of the most basic type of server assembly
can be visualised as shown in figure 4.5

Chapter 4. Proposed Architecture

P VR e
~ /

C Network
L. Af,/)

Response Connection Packet B ol
. ‘\ \‘, / \ Responses streamed
l@ Ol o0 l O Ol down the socket

N Deliverer
o Response Packet Objects
(Packet<Response> channel) Responses are sent down the
connection back to the client

-

Figure 4.4: Conceptual View of a Deliverer Component

Y N

Socket connection requests C
Network
- o
e N o
Dispatcher
Objects representing client
connections produced.
_ / Responses streamed
down the socket
o Connection Objects
© (connection channel)
© Request Connection Packet Response Connection Packet
™\ \ Ve \ \ |
T S S,
©Q |O ©)
Transformer Responder

Request Packet Objects
(Packet<Request> channel) Requests are examined and used to
generate Responses

Data from connections are read into
Request Objects

Response Packet Objects

~_ L J (Packet<Response> channel)
; - S G
Ve N

\

Deliverer

Responses are sent down the
connection back to the client

A ,/

Figure 4.5: A Minimalist Server Assembly

Chapter 4. Proposed Architecture 45

4.2.2 Auxiliary Components

The following component types can be included in a server assembly to add
security or enhance the performance and functionality of a Responder sub-
system.

1. Authoriser

An Authoriser is a component that maps Request — Request. Inter-
nally, it maintains a conceptual mapping of Request patterns (made
from Method, Authorisation Headers, etc) to boolean values represent-
ing whether or not a Request has authorisation to be serviced. If autho-
risation is not permitted, the Request is transformed into a Challenge
RequestE] that causes the destination Responder to issue to the client
a Challenge Response instead of the originally requested Response. If
authorisation is granted, the Request is left unaltered.

2. Cache

A Cache is a generic component that can be used to intercept the in-
put and output channels of a Responder assembly. In so doing, it can
store Responses as they leave the Responder and Intercept Requests as
they are channelled to the Responder. If an intercepted Request can
be serviced from the cache’s store, the cache will issue the Response,
bypassing the underlying Responder. The effect of this composition, as
viewed from an external entity, is an enhanced Responder component.
The original Responder becomes subordinate to the Cache. This Cache
works on the same principle as caching proxies on the Internet. It will
examine the headers of Responses from the Responder and determine
whether or not a Response qualifies for caching so that no program-
matic changes need to be made to any other component in order to
utilise a cache. See figure [4.6| for an illustration

3. Connection-Aggregator

In server implementations where concurrency needs are greater due
to increased load, a Connection-Aggregator component can be used
to ensure that all Requests originating from a single connection fol-
low one another through the same path within the system. As mes-
sages are channelled to a pool of identical components for servicing,
the first message has its shared Connection object ‘fingerprinted’ with
information stating which channel it was routed down. Any subse-
quent message containing a Connection with a ‘fingerprint’ from this

2A sub-type of Request

Chapter 4. Proposed Architecture 46

Request Connection Packet Response Connection Packet

\ L (\\ \

Cache
Request Packet Objects Response Packet Objects

o (Packet<Request> channel) #fa Request can be serviced locally, nol (Packet<Response> channel) >
need to go to Responder
Requests Responses
Responder
Requests are examined and used to
generate Responses

Figure 4.6: A Generic Cache

component is automatically routed down the same path. Typically
a Connection-Aggregator would be placed immediately before a pool
of identical Responder stacks or a pool of identical Deliverer compo-
nents. Connection-Aggregators are necessitated by the requirement in
the HTTP /1.1 specification[4] that multiple requests pipelined through
a single connection must return to the client in the same order. See

figure [4.7]

EFEBDDACBAA /7\

. Connection Aggregator C (

o Request Packet Objects
(Packet<Request> channel) Ensures connections follow the same

path when components are replicated \\

Figure 4.7: An Illustration of A Connection Aggregator (Left hand side is
the input, right hand side is the output)

4. Router

A Router is a component that is used to de-multiplex messages that
collectively fall under a particular type, separating them into imple-
menter defined dynamic sub-types. It contains one input channel and

Chapter 4. Proposed Architecture 47

multiple output channels. Each output channel corresponds to one of
these sub-types. For example, an implementer may decide to combine
a stand-alone File Server Responder with a stand-alone Application
Server Responder to create a dual purpose server. URI patterns can
be specified to distinguish between Requests for the two and used in
the Router’s routing algorithm to ensure that each Responder receives
Requests that it is capable of servicing. See figure

FFF a N
—»‘ File Responder ‘
g J

DFDCDDFCCFF

. Router
o Request Packet Objects

(Packet<Request> channel)

Configuration
Redirects Requests based on user Responder

defined Types \ j /

DDDD / N
IS Database Query

Responder

Figure 4.8: An Illustration of a Router (Left hand side is the input, right
hand side is the output).

5. Session-Decorator

A Session-Decorator is a component that can further enhance a Respon-
der assembly. For certain types of applications, data must be stored
across multiple client-server request-response interactions. When the
need for this arises, the Responder will create a Session object to con-
tain all the state information. This Session object is attached to all
outgoing Responses and all incoming Requests. The Responder ex-
pects to be able to continue working on the same Session when sub-
sequent Requests come back from the same client. This functionality
is achieved by having the Responses encoded with a Session identifier
(using cookies or URL rewriting), and having the Session objects stored
in a <sessionlD, Session> mapping on the server. This same identi-
fier is returned by the client when a new Request is issued, allowing
the Session decorator to retrieve the corresponding Session object and
attach it to the incoming Request before is reaches the Responder.

Chapter 4. Proposed Architecture 48

4.3 Internal Message/Object Types

4.3.1 Static System Types
1. Request

A Request is an object that embodies the data sent upstream from the
client. It provides convenient methods used for retrieving and setting
its properties by components that will need to perform operations on
it. In a normal request-response interaction, the final destination of a
Request is the Responder component. There are two special sub-types
of Request, namely, Error-Request and Challenge-Request. A normal
Request can be transformed into one of these two if an error is generated
on the Request’s way to the Responder, or if authorisation fails. All
Responders descend from a type that can automatically handle these
special Requests when confronted with them.

2. Response

A Response is an object that encapsulates the data that will be streamed
back to the client. The final destination for a Response is the Deliverer.
Here we also have Challenge-Response and Error-Response sub-types.

3. Packet

A Packet is simply a convenience object used to allow a Connection
object to piggy back with a Request and Response until it is used at
the Delivery stage.

4. Connection

A Connection is an encapsulation of an Operating System socket. There
is a 1:N relationship between Connections and Requests. A Connection
must travel with whatever object it has directly or indirectly given rise
to, so long as there is a possibility that communication will need to be
made with the originating client applicationﬂ.

4.3.2 Dynamic User Types

The component based architecture proposed here promotes the modularisa-
tion of tasks wherever possible. It is therefore possible to build specialised
subcategories of the static types (Requests, Responses, etc) that are routed

3The client would normally require some form of feedback from the server

Chapter 4. Proposed Architecture 49

to and processed by specialised components. This sub-typing is based on pat-
terns within the messages that reveal further information about their type.
For example, all URIs starting with /docs/ could refer to files and thus be
routed to an appropriate File Responder. As this typing is subject to the
needs of the implementer and is only enforced at run time, it is referred to
as dynamic. The implementer is required to create a tree structured collec-
tion of custom typed!] that can be used to de-multiplex messages using an
auxiliary Router component (See page .

4.4 The Connectors

The connectors used throughout the system are either non-buffered, synchro-
nised, blocking channel{’] or buffered channels.

The buffered channels are used mainly as input channels to components
where there is the possibility for latency of unpredictable length in the
processing of any message.

The non-buffered channels can be used to switch a single writer among
many readers or many writers to a single reader. This switching is accom-
plished using synchronisation on the channel’] There are cases when this kind
of switching is desirable, such as when a single Dispatcher needs to indiscrim-
inately dish out Connections to Transformers or when all Responses need to
be brought to one point for aggregation by Connection and distributed to a
pool of Deliverers in correct sequence.

4.5 Assembly Rules and Patterns

The server architecture presented thus far has a very simple to understand
flow of processing and is designed for ease of use and safe assembly. However,
due to the dynamic nature of part of the typing regime and also due to the
generic nature of the components, some care needs to be taken to ensure that
a configuration is semantically sound.

4The sub-types should form a partition of the parent type, i.e. the intersections of their
instance spaces should be empty but the union of all the instance spaces should equal the
instance space of the parent type

Ssynchronised on their read and write methods and allow data to be transferred only
when both reader and writer are ready - OCCAM style “shared” channels

6The underlying Operating System will ensure that when many components contend
for access to one end of the channel, each will take its turn

Chapter 4. Proposed Architecture 50

4.5.1 The Straight Pipeline Assembly

The simplest assembly is the one illustrated in figure [£.5] This can be clas-
sified as a ‘Straight Pipeline Approach’. Here we have a single Dispatcher,
Transformer, Responder and Deliverer. Every message follows a single pre-
dictable path through the system. In this setup, no Dynamic typing on the
part of the implementer was used (evidenced by the absence of an auxiliary
Router). As we will see in later sections, configurations are possible using
routers that allow for multiple sub-systems to be combined into a single sys-
tem.

4.5.2 Decorated Responders

This architecture allows for the creation of ‘feature stacks’ at the point of
Response Generation. The Cache and the Session-Decorator components
were introduced in section [4.2.2] These components can be stacked above
a Responder (by having the lower component’s input and output channels
connected to the upper component), effectively creating a ‘super’ Responder
which can provide more functionality than its primitive counterpartl See
figure for an illustration.

4.5.3 Responder Partitioning

If an implementer of the server wishes to design the Response sub-system as a
collection of specialised Responders, this can easily be achieved by including a
Router component that will filter all incoming Requests and channel them to
the appropriate Responder sub-assembly. The algorithm used to distinguish
one Request from another must be supplied by the implementer of the system.
Figure provides an illustration of the principle used in this design pattern.

4.6 Scaling to Higher Degrees of Concurrency

The minimal configuration of this server is designed to require minimal re-
sources from its host environment. However, it lacks the ability to support
a large number of concurrent users. Using the same building blocks, it is
possible to introduce degrees of multiplicity at each stage of the process in
order to improve the overall capacity and throughput of the system.

"It should be noted that any assembly satisfying the requirement of turning a Request
into a Response can be classified as a Responder. This being the case, the entire system
between Transformer and Deliverer can be thought of as a Responder and encapsulated.
However, in most cases the stacking of features would occur at a more fine grained level

Chapter 4. Proposed Architecture 51

Request Connection Packet Response Connection Packet

| !
© @ [0®] [00]
Response Packet Objects _»

(Packet<Response> channel)

\ o
©®0] [0®] [00]
o Request Packet Objects

(Packet<Request> channel)

Cache

If a Request can be serviced locally, nol
need to go to Responder

Requests Responses

Session Decorator

Requests Responses

Responder

Requests are examined and used to
generate Responses

Figure 4.9: A Typical Feature Stack

4.6.1 Introducing Concurrent Transformers

At the Transformation stage, data is read off the channel and used to build
up Request objects. While this goes on, new connections are not being read
through the channel and at most one additional socket connection from a
client could have been accepted by the Dispatcherﬂ. The result is that during
this time the system is unable to accommodate new clients. A solution to this
problem is to introduce replicas of the system’s Transformer, each feeding off
the same channel’} The Dispatcher will ‘switch’ to any Transformer that is
willing to accept a connection. This, in effect, serves to compensate for the
potential differences in output rates between the Transformer and Dispatcher
during a time of increased activity.

4.6.2 Introducing Concurrent Responders

In order to increase the ability of the server to service more client requests
concurrently, multiple copies of an individual type of Responder can be made
available. However, due to the strict ordering requirements for responses to

8The Dispatcher is either in a state of waiting for new client Requests or blocked while
waiting for the Transformer to collect a new Connection
9Synchronisation is built into the channel to ensure atomic delivery of messages

Chapter 4. Proposed Architecture 52

pipelined requests, a Connection-Aggregator needs to be placed before each
pool of Responder clones (As in figure to ensure that messages grouped
by connection follow the same path through that part of the system and
maintain their order.

4.6.3 Introducing Multiple Dispatchers

The number of Dispatchers that the system has determines the number of
clients the server can send data back to at any given time. Having too few of
these can result in a bottleneck, particularly if large files are being transferred
over slow connections. To counter this, clone Dispatchers can be deployed in
the same way clone Responders are deployed. A Connection-Aggregator is
placed in the pipeline before the pool of Dispatchers to ensure that no two
Dispatchers share a Connection object and that they Receive the associated
Responses in the correct sequence.

Figure [4.10| on page [53|illustrates an example of a more complex server
assembly.

4.7 Summary

In this chapter we described in greater detail the characteristics of the server
components that we implemented to construct our toolkit. Chapter five will
expound on the Java implementation of the architecture described in this
chapter.

Chapter 4. Proposed Architecture

I N

Network 2
//

-
s
p
1

AN

— e

Socket connection requests

Connection Objects
(connection channel)

)

Dispatcher

Objects representing client
connections produced... @00

p

Multiple Transformers read
off the same channel

N Request
e Transtormer.) Packet
—_—
[VIo)Z
Data from connections are read into — 1
_ FoesiObeds) Comnecton

(Transformer \

‘ Data from connections are read into ‘
\ Request Objects J

Request Packet Objects

(Packet<Request> channel)

y

IE

S

Multiple Transformers write

N
/ Transformer \

Data from connections are read into ‘

[
Request Packet Objects
(Packet<Request> channel)

Router

S o to the Responder Sub-
\ S 4 Assembly
N /
Y
> Cache)
/ Response
Requests Responses —
(o8
- \ Connection
(Session Decorator | ?/
J ©
Packet

Requests

e

{ File Responder
.

Responses

OO/

/ Response Packet Objects

(Packet<Response> channel)

e ™\

Redirects Requests based on user
defined Types

Connection
Aggregator

|

Connection
Aggregator

N

) L. (BD

—» Database Responder

Multiple Responders write
to the Deliverer Pool

Database Responder

N

/

e N\
—b(\ Database Responder)
N)
B
Deliverer (3
/
BN
Deliverer

e

Deliverer } ~ "‘“\/7
—

™
¢ Network <
~)

Responses streamed
down the socket

o/

Deliverer

Figure 4.10: A More Complex Assembly

Chapter 5

Implementation

This chapter presents an actual implementation of our component architec-
ture. The programming language used was the Java 2 Platform Standard
Edition (J2SE) version 5.0. This platform provided the object-oriented fea-
tures we required, and in particular provided support for generic types, which
are used significantly throughout the source code.

We begin with an overview of the package organisation, after which we
provide an explanation of a few key classes in the framework.

5.1 Java Package Overview

The implementation is divided into the following Java packages:

net.zuze.msc.csp

This package contains classes and interfaces that describe the very
basic component and communication constructs of the system. The con-
tents of this package are listed below:

w BufferedChan<Type>
A channel with an internal buffer

m Chan<Type>
A synchronised channel

m Channel<Type>
An interface for all kinds of channels

o4

Chapter 5. Implementation 55

11y

11y

1y

1y

1y

i 2

iy

Port
An interface that describes the behaviour of writing data to and
reading data off the channel

Port.In<Type>
Interface for reading data off a channel

Port.OQut<Type>
Interface for writing data to a channel

Port.ReadListener
Interface for listeners that get notified when a piece of data is read
off the channel

Proc
An implementation of a Process

Process
An interface for objects that will provide services

Process.Epilogue
An interface containing a method that gets invoked when the
process terminates

11y

iy

net.zuze.msc.artefacts

This package contains classes which represent the objects that are
passed through the channels and processed within the server. The con-
tents of the package are listed below:

AbstractMessage
An Abstract Message is an ancestor of both Requests and Re-
sponses. It provides implementations for their common functional-

ity

CachedRawResponse

A CachedRawResponse is a ‘copy’ of the original response that
would have been sent back to the client. It is stripped of current

context information (such as whether the connection should remain
persistent or not)

Chapter 5. Implementation 56

1y

1y

11y

1y

iy

iy

11y

11y

11y

1y

1y

CachedWrappedResponse
This class encapsulates a raw cached response and adds the relevant
context information about the current connection

ChallengeRequest

A Challenge Request is the result of a Request that has been
through an authoriser but which did not contain the required au-
thentication information

ChallengeResponse

A Challenge Response is one that contains in its headers the in-
formation that will instruct the browser to obtain authentication
credentials from the user

Connection

A Connection encapsulates the InputStream, OutputStream and
InetAddress for an accepted socket connection and is passed along
in each packet that contains a message that it gave rise to

ErrorRequest
The result of an error occurring caused by a Request during its
processing chain to the Responder

ErrorResponse
A standard response object created from an ErrorRequest

FileResponse
A standard file response object

Message
An interface that any message (Request or Response) should con-
form to

Packet<TYPE extends Message>

A general purpose container for messages throughout the system.
A packet encapsulates a Message of type ‘TYPE’ and its associated
connection

Request
An abstract class that all Requests descend from

Response
An abstract class that all Responses descend from

Chapter 5. Implementation 57

1y

11y

11y

1y

11y

RouteAlgorithm
A class that encapsulates the functionality that a Router component
needs in order to identify the type of a Request

SimpleRequest
A general purpose Request object that allows for the retrieval of
uploaded form data and files

StatusResponse
A standard response object created to send back a status condition,
for example, when a file gets moved permanently

TimeResponse
A Response that embodies a message that displays the current time

TraceResponse
A Trace Response embodies in its entity body the Request that
asked for it

net.zuze.msc.artefacts.util

This package contains classes that describe special objects found
within the Artefact classes. The contents of the package are described
below:

iy

iy

iy

1y

Entity
This interface represents some data that comes in as the content
body of a request

Entity.File
This interface represents an individual file that has been uploaded
as part of an entity body

Session

An interface that describes a session object, which stores informa-
tion that must persist across multiple Request-Response interac-
tions

SessionMap
A modified HashMap used to store Session objects in memory and

Chapter 5. Implementation 58

periodically cleanup old sessions (that have been idle for a long
time)

m SimpleSession
An implementation of a Session

w SmartHashMap<KeyType,ValueType>
A modified HashMap that allows the garbage collector to reclaim
the least used of its entries. This is used for caching responses

net.zuze.msc.util

This package contains classes that store standard server information
and provide methods that are used throughout the system. The contents
of the package are listed below:

w LineReader
This class has methods that are used for converting the streamed
input from the client into strings corresponding to each line of the
request

w ServerSettings
This class groups together server configuration settings for easy
access by the system components

- ServerUtils
This class contains useful utilities for any general purpose server

net.zuze.msc.protocols

This package contains classes that store information about the par-
ticular protocols being used (such as their status codes). The contents of
the package are listed below:

mw HTTP
Stores HTTP specific information

Chapter 5. Implementation

net.zuze.msc.Exceptions

This package contains classes that encapsulate exceptions that can
occur during the processing of requests. The contents of the package are
listed below:

iy

iy

iy

iy

1y

[l 2

1y

AssemblyException
Thrown when an illegal assembly condition is detected

BadRequestException
This type of exception is thrown if errors are detected during the
construction of a request

ForbiddenException
This exception is usually thrown from one of the responders when
a particular forbidden resource is requested, e.g. directory listing

InternalServerException
This exception is thrown when some unexplainable error occurs
within the server

NoServiceException
This exception is thrown from the router or a responder when the
service requested by the request is unknown or unavailable

RedirectException
A Redirect Exception is thrown from a responder when a resource
has been moved permanently

TimeoutException
This exception is thrown from the request message constructor
when incoming data is not detected after a certain period of time

net.zuze.msc.skeletons

This package contains interfaces for all the component types that can
exist in a server. The contents of the package are listed below:

1y

Authoriser<Type>
An interface for an authoriser, which takes in request packets, in-

59

Chapter 5. Implementation 60

1y

[l 2

1y

11y

iy

11y

1y

iy

iy

spects them and carries out authentication and authorisation. If
authentication information is missing, a ChallengeRequest is gen-
erated and sent forward in its place

Cache<InType, OutType>

An interface for a generic Cache, which attempts to service requests
from its memory. If a Cache cannot service a request from its
memory, the request is passed on to the subordinate Responder. A
Cache is an extension of a Proxy.

Component
An interface for the main processing units of the system.

Consumer<InType>
An interface for a component that takes in messages on its input
port

Deliverer<Type>

An interface for a Deliverer, which takes a response packet and sees
to it that the client gets it by streaming the response data through
its associated connection

Dispatcher<Type>

An interface for a Dispatcher, which accepts requests on a given
port, makes connection objects out of them and passes them on to
a transformer

One2NComponent<Type>
This is a component that has one input port and more than one
output port. Each of the output ports must be addressable.

One20neComponent<InType, OutType>
This is a component that has one input port and one output port.

Producer<OutType>
An interface for a component that outputs messages on its output
port

Proxy<InType, OutType>

A Proxy is a component that acts as a bypass to another compo-
nent. It contains additional input and output ports that connect
to the component that it is bypassing.

Chapter 5. Implementation

11y

11y

11y

Il 3

1y

Responder<InType, OutType>
An interface for a Responder, which generates a response out of a
request

Router<Type>
An interface for a Router, which takes in a request packet and routes
it to the appropriate responder. A Router is a One2NComponent.

RoutingAlgorithm

An interface for an object that encapsulates a method used to de-
termine the type of a request. (This is passed as a parameter to a
Router)

Server

An interface for a server assembly. Provides methods for adding
components and connectors, making attachments, and starting up
the server.

Transformer<InType, OutType>
An interface for a Transformer, which takes a Connection and gen-
erates one or more requests out of it

net.zuze.msc.simpleserver

This package contains classes that implement the components for an
actual server instance. The contents of the package are listed below:

11y

1y

1y

AbstractResponder
An Abstract class that all Responders must descend from. Imple-
ments code for handling ErrorRequests and ChallengeRequests.

ConnectionAggregator<T extends Packet<Message>>

A ConnectionAggregator is a component that ensures that all Mes-
sages that share a common connection travel down the same path
when there are multiple identical Responders or Deliverers to choose
from

FileAuthoriser
The File Authoriser takes a request packet, tests if the necessary

61

Chapter 5. Implementation 62

iy

1y

11y

1y

iy

1y

iy

11y

i 2

authentication has been included and either sends it on to the server
for servicing or dumps it and sends forward a Challenge Request
based on it if authorisation fails.

FileServiceResponder

This class takes in request packets, retrieves the file from the O/S’s
file system, and constructs a response object which will get passed
on to the deliverer

SessionDecorator

A Session Decorator stores away session objects from outgoing Re-
sponses and marks the Responses with session IDs (as a cookie). It
intercepts incoming Requests and retrieves their session objects (if
any exist)

SimpleCache
The SimpleCache intercepts requests and sees if it can service them
from its store in memory.

SimpleDeliverer
This class takes in Response Packets and sends them off to the
client

SimpleDispatcher
This class accepts connections on the given port, creates connection
objects out of them and sends them down a channel to a transformer

SimpleRouter
This class takes in a packet, determines its dynamic type and routes
it off to the correct service provider

SimpleSSLDispatcher

This class accepts SSL connections on the given port, creates con-
nection objects out of them and sends them down a channel to a
transformer

SimpleTransformer
This component is Responsible for generating one or more Request
objects from a given connection.

SubSystemCap
This class is a Proxy that is used to provide a gateway to a sub-
system of components.

Chapter 5. Implementation 63

m TestServer
This class implements an actual server. It contains methods that
are needed to add components, add connectors, make attachments
and startup the server.

w TimeResponder
Serves the time back to the client

w TraceResponder
This class just sends back as the response body, what came in as
the request

5.2 Class Descriptions

The entire Application Programming Interface for the Java implementation
can be found in the appendix. This section takes a closer look at a few classes
that are of particular interest.

5.2.1 ConnectionAggregator

In chapter 3 we explained the use of persistent connections and the require-
ment that the responses to pipelined connections be returned in the same
order as they were requested. Using our assembly architecture, multiple
copies of a component can be used to accommodate the concurrent servicing
of requests. The result of this is that for a particular type of request, there
is more than one possible path through the system. A set of requests that
originated from the same connection could take different paths through the
system and be returned to the client out of sequence. To counter this oc-
currence, a ConnectionAggregator is placed in the pipeline before a pool of
cloned components to ensure that this dispersion does not take place. Below
is the central piece of code in the ConnectionAggregator

public void run() {

while (true)
{
try{
T job = in.read();

Chapter 5. Implementation 64

Port.0ut<T> p = job.getConnection().getPath(this);

if (p == null)
{
p = allocate();
if (p == null) throw new InternalServerException
("Busy") ;

job.getConnection () .setPath(this, p);
}

p.write(job);

}
catch(InternalServerException e){
System.err.println("Server Too Busy...");

}

5.2.2 Connection

This class encapsulates the Socket that is used to transfer data to and from
the client. The Connection object includes two special methods to assist in
the correct flow of messages in the pipeline. These allow a ConnectionAg-
gregator to store the path allocation decision that it makes the first time it
‘sees” a connection, and to recall this decision for subsequent message pack-
ets containing the same connection. A snippet from the source code of the
connection class is shown below.

java.util.Hashtable<Proc ,Port.0Out> fingerPrints;

Chapter 5. Implementation 65

public Port.Out getPath(Proc p){
return fingerPrints.get(p);

}

public void setPath(Proc p, Port.Out po){
fingerPrints.put (p,po);
}

5.2.3 SessionMap

A SessionDecorator requires a data structure that can map session ids to
Session objects. These Session objects are stored from outgoing responses and
retrieved from the store for incoming requests. Since these Session objects
are stored in memory, we need a way to control the time a Session spends in
the map to avoid running out of memory.

This was achieved by encapsulating a HashMap class into a SessionMap
class. The SessionMap includes a TimerTask that runs periodically to remove
Session entries that have been idle for too long. Below is the java listing.

public class SessionMap {

HashMap<String, Session> theSessions = new HashMap<String

, Session>();

long clean_time;

public SessionMap(int cleanuptime) {

Chapter 5. Implementation

66

clean_time = cleanuptime * 1000;
Timer t = new Timer ();

CleanupTask ct = new CleanupTask();
t.schedule(ct,clean_time,clean_time) ;

public void put(String key, Session value){
theSessions.put (key,value);

}

public Session get(String key){
return theSessions.get (key);

}

public void remove(String key){
theSessions.remove (key) ;

3

class CleanupTask extends TimerTask {

public void run()

{

Session sess;

for (Map.Entry e: theSessions.entrySet())
{

Chapter 5. Implementation 67

sess = (Session) e.getValue();
if (sess.hasExpired ()){
theSessions.remove(e.getKey ());

3

5.2.4 SmartHashMap

Our caching component needs a way to cache items in memory without util-
ising space that the system may need for more important purposes. We have
achieved this by defining our SmartHashMap which has a guaranteed capac-
ity but which can store more items if memory is available. This is achieved
through the use of what are called Hard References and Soft References.
When an item is added to our SmartHashMap, it is simultaneously stored
with a Hard Reference in a Least Recently Used (LRU) HashMap and with
a Soft Reference in another HashMap.

The LRU HashMap will keep the most recently used items in memory
when entries exceed its capacity and dump the Least Recently Used ones.
Items are never explicitly removed from the two HashMaps. If the garbage
collector needs memory, it has the option of reclaiming memory from the
objects that have only Soft References to them. The code listing for the
SmartHashMap is shown below.

package net.zuze.msc.artefacts.util;
import com.opensymphony.oscache.base.algorithm.LRUCache;
import org.apache.commons.collections.map.ReferenceMap;

public class SmartHashMap<KeyType, ValueType> {

Chapter 5. Implementation

68

ReferenceMap softs = new ReferenceMap(ReferenceMap.SOFT,
ReferenceMap.SOFT) ;

LRUCache hards;

public SmartHashMap (int size) A
hards = new LRUCache(size);

}

public void put(KeyType key, ValueType value){
softs.put (key, value);
hards.put (key, value);

public ValueType get(KeyType key){
ValueType val = (ValueType) hards.get(key);
if(val == null)
{
val = (ValueType) softs.get(key);
if (val != null) hards.put(key,val);
}

return val;

Chapter 5. Implementation 69

5.2.5 SimpleSSLDispatcher

The SimpleSSLDispatcher is a Dispatcher that accepts SSL connections in-
stead of normal TCP connections. In order to use SSL Sockets, one must
have a file configured that contains the private and public keys that will
be used for encrypting and decrypting communication with client applica-
tions. The file that stores this information is called a KeyStore. Once this
file is configured, it can be loaded into the application prior to instantiating
the SSLServerSocket. At this point the SSLServerSocket works just like a
normal socket, all SSL specific handshaking and encryption is done in the
background. The source code for the SimpleSSLDispatcher is shown below.

public class SimpleSSLDispatcher extends Proc implements net.
zuze .msc.skeletons.Dispatcher<Connection> {

Port.Out<Connection> out;

ServerSocket serverSocket;

public SimpleSSLDispatcher (Port.Out<Connection> out,int

port) {
this.out = out;

tryq{

System.setProperty("javax.net.ssl.keyStore", ".
keystore");
System.setProperty (" javax.net.ssl.keyStorePassword"
"changeit");
serverSocket = (SSLServerSocket)
SSLServerSocketFactory.getDefault ().
createServerSocket (port) ;

}
catch (IOException e){

Chapter 5. Implementation 70

System.err.println("From the ssl dispatcher
constructor ("+e+")");

public void run() {
int 1 = 1;
while (true)<{

tryq{
Connection ¢ = new Connection(serverSocket.accept ()
)
if (ServerSettings.getInstance().traceConnections ()
)
System.err.println("Sent: "+(i++)+" ");
out .write(c);
}
catch (SSLException e){
if (ServerSettings.getInstance().traceExceptions())
{
System.err.println("From the dispatch run("+e+")

II);

}
}
catch (IOException e){
if (ServerSettings.getInstance().traceExceptions())
{
System.err.println("From the dispatch run("+e+")

")

}

public void setOutputPort(net.zuze.msc.csp.Port.0Out<
Connection> out) {
this.out = out;

public void stop() {
}

Chapter 5. Implementation

71

public void start () {
this.fork () ;
}

public void start(int num) {
for(int i=0;i<num;i++)
this.fork () ;

5.2.6 SimpleRouter

The SimpleRouter directs request packets towards the appropriate Respon-
der. It has a flexible number of resource types that it can accommodate,
which is determined by the capabilities of the RoutingAlgorithm. The source

code for this component is provided below.

public class SimpleRouter extends Proc implements Router<

Packet <Request >>{

Port.In<Packet <Request>> in;

RoutingAlgorithm alg;

HashMap<String, Port.0Out<Packet<Request>>> thelOuts
HashMap<String, Port.Out<Packet<Request>>>();

Port .Out <Packet <Request>> theOne;

String defaultService;

public SimpleRouter(Port.In<Packet<Request>> in,
RoutingAlgorithm alg) {

this.in = in;
this.alg = alg;
this.name = "SimpleRouter";

for(String s: alg.getServices()){
theOuts.put(s, null);
}

defaultService = = "File";

new

Chapter 5. Implementation 72

public void run() {
while (true)
{
Packet <Request> job = in.read();
try {

String resourceType = alg.interpret(job.getMessage

O

theOne = thelOuts.get(resourceType);

if (theOne == null) throw new NoServiceException("
The path to the Responder for "+resourceType+"’s
has not been set");

thelOne.write (job);
}
catch(NoServiceException e){

ErrorRequest er = new ErrorRequest (HTTP.getInstance
() .getCode ("HTTP_NOTIMPLEMENTED"), e.getMessage ()
,job.getMessage ());

theOne = theOuts.get(defaultService);

if (theOne != null) theOne.write(new Packet<Request
>(er, job.getConnection()));

if (ServerSettings.getInstance().traceExceptions())
System.err.println("\t!! NO SERVICE EXCEPTION

FROM ROUTER THREAD ("+Thread.currentThread().
getName ()+")");

public void setInputPort(net.zuze.msc.csp.Port.In<
Packet <Request>> in) {
this.in = in;

}

public void stop() {
}

public void start () {
this.fork();

Chapter 5. Implementation 73

}

public void start(int num) {
for(int i=0;i<num;i++)
this.fork () ;
}

public void setOutputPort(String id, net.zuze.msc.csp.
Port.0Out <Packet <Request>> o) {
theOuts.put(id, o);

5.2.7 FileAuthoriser

The FileAuthoriser checks the URL of incoming requests to determine if
authorisation is required. If it is, the FileAuthoriser performs a check on
the authentication information supplied in the request by the user. This
involves ensuring that the password that the server has in its records for a
particular user matches the one supplied in the request. The only compli-
cation lies in ensuring that the password is not revealed to a third party
during transmission from the client to the server. This is done by encrypting
the password. HTTP offers two ways to perform this: Basic and Digest.
Basic Authentication hides the password by encoding the concatenation of
username:password in Base64. The code for performing the Base64 check
in Java is shown below.

Stringl[] s theUsers.next () ;
String pass = Base64.encode(s[0]+":"+s[1]);
if (auth.equals("Basic "+ pass)) return true;

The drawback to this approach is that the encoding is easily reversible
and provides very mild protection of the password. A better approach to
protecting the password is the use of Digest Authentication. This uses a di-
gest function that is not easily reversible. The protection of the password is
increased further by attaching extra information to the username and pass-
word before the digest is performed. The code snippet below shows the steps
involved in performing a Digest Authentication check.

MessageDigest md5 = MessageDigest.getInstance ("MD5");

Chapter 5. Implementation 74

String sl = authParameters.get("digest username")+":"+
authParameters.get("realm")+":"+pass;
byte[]l] bl = md5.digest(sl.getBytes());

String s2 r.getMethod () +":"+r.getURI () ;
byte[] b2 = md5.digest(s2.getBytes());

String s4 = byteArrayToHexString(bl)+":"+authParameters.get(
"nonce")+":"+authParameters.get("nc")+":"+authParameters.
get ("cnonce")+":"+authParameters.get ("qop")+":"+
byteArrayToHexString (b2) ;

byte[] b4 = md5.digest(s4.getBytes());

String expected = byteArrayToHexString(b4);

if (expected.equals (authParameters.get ("response")))

5.3 Summary

This chapter provided insight into the Java implementation of our server
toolkit. Further information on the Application Programming Interface can
be found in the appendix. The source code for all the classes is also available
on the accompanying CD-Rom.

Chapter 6

Case Studies

This chapter illustrates the effectiveness of our component toolkit in con-
structing servers. We present two usage scenarios and explain the process of
assembling and deploying each individual server.

6.1 Case 1: An Embedded Server

Our first case is an example of a server embedded in a host application. The
following sections explain the requirements and the solution that can be built
using our toolkit.

6.1.1 The Requirement

A desktop application is being developed that will keep an archive of a user’s
personal digital photos. This application has a rich user interface that allows
users to scale photographs, create photo collections, produce custom E-Cards
and convert from one file format to another. This application will mostly be
used in stand-alone mode, however, the developer would like to add the
ability to access some of this functionality remotely. This would be useful
for sharing photos with friends and colleagues. The developer would like
this functionality to be accessible from a web browser but does not want to
develop scripts in PHP or ASP and host the application on a central web
server.

6.1.2 Proposed Server Assembly

The server that we need to embed in this application would have the following
characteristics:

75

Chapter 6. Case Studies 76

Comfortably support up to five users concurrently

Allow communication to occur using Secure Sockets Layer

Support the uploading and downloading of large files
e Provide password access to certain resources

The assembly that we propose would contain an SSL Dispatcher for secure
access and a normal Dispatcher for non-sensitive data. It will contain a pool
of ten Transformers to accommodate latency in the uploading of large files.
It will also have a pool of ten Deliverers to accommodate the simultaneous
delivery of large files back to different clients. The requests will fall into two
main categories. The first is a request to browse and view photos, while the
second is a request to convert a file to another format. These two types will be
distinguishable by analysing a prefix in the URL. Two types of Responders
will be deployed, one for each service type and a Router will ensure that
requests are routed to them appropriately. A cache will be included in the
file browsing region of the assembly and an Authoriser will be placed in the
pipeline before the file format conversion responder. Ten of each type of
responder will be deployed, each supported by a ConnectionAggregator to
prevent the dispersion of requests originating from the same connection.

6.1.3 Customisation

The developer will be able to use the existing Dispatchers and Transformers
without modification. A custom routing algorithm will need to be written
to distinguish between browsing requests and file conversion requests. This
algorithm will be passed as a parameter to a standard Router. Two descen-
dants of an AbstractResponder will need to be written, one for each type of
request. They will invoke the appropriate system commands for each URL
requested and construct appropriate HTTP responses. A standard Cache
will be used for the browsing Responder and a standard Authoriser will be
deployed. Standard Deliverers will be used at the end of the pipeline.

6.1.4 Putting The Components Together

After having acquired all the components for the server, the next step is to
put the pieces together and set the system in motion. This can be done by
instantiating a server object and invoking assembly commands on it. A code
fragment of how this is done is shown below.

Chapter 6. Case Studies 77

TestServer ts = new TestServer ();

try
{

Producer<Connection>
dispatcherl = ts.addProducer(new SimpleDispatcher (null
,80) ,1);
Producer <Connection>
dispatcher2 = ts.addProducer (new SimpleSSLDispatcher (
null ,441) ,1);

One20neComponent <Connection ,Packet <Request>>
transfomerSet = ts.addOne20neComp (new SimpleTransformer (
null ,null) ,20);

One2NComponent <Packet <Request >>
theRouter = ts.addOne2NComp (new SimpleRouter (null,
new CustomRouteAlgorithm()));

One20neComponent <Packet <Request >, Packet<Request>>
theAuth = ts.addOne20neComp(new ConvertAuthoriser (null,
null) ,1);

One20neComponent <Packet <Request >,Packet <Response>>
PhotoResponderPool = ts.addOne20nePool (new
PhotoResponder (null ,null) ,10);
One20neComponent <Packet <Request >,Packet <Response>>
ConvertResponderPool = ts.addOne20nePool (new
ConvertFormatResponder (null ,null) ,10);

Consumer <Packet <Response>>
DelivererPool = ts.addConsumerPool (new
SimpleDeliverer (null) ,10);

Proxy<Packet <Request >,Packet <Response>>
theCache = ts.addProxy(new SimpleCache (null,
null ,null ,null));

Chapter 6. Case Studies

78

Channel <Connection>

dsp2trn = ts.addConnector (new BufferedChan<Connection>("

toTrans" ,50)) ;

Channel <Packet <Request >>

trn2rtr = ts.addConnector (new BufferedChan<Packet<

Request >>("toRouter" ,50));

Channel <Packet <Request >>

rtr2csh = ts.addConnector (new BufferedChan<Packet<

Request >>("toCache" ,50));

Channel <Packet <Request >>

rtr2cau = ts.addConnector (new BufferedChan<Packet<

Request>>("toConvertAuthoriser" ,50));

Channel <Packet <Request >>

cau2cfr = ts.addConnector (new BufferedChan<Packet<

Request>>("toConvertFormatResponder" ,50)) ;

Channel <Packet <Response>>

resp2dlvr = ts.addConnector (new BufferedChan<Packet<

Response>>("toDeliverer" ,50));

ts.attach(dispatcherl, transfomerSet, dsp2trn);
ts.attach(dispatcher2, transfomerSet, dsp2trn);

ts.attach(transfomerSet, theRouter , trn2rtr);

ts.attach(theRouter, "PhotoBrowse", theCache ,

rtr2csh) ;

Chapter 6. Case Studies 79

ts.attach(theRouter, "FileConvert", theAuth , rtr2cau);

ts.attach(theAuth, ConvertResponderPool, cau2cfr);

ts.attach(theCache, DelivererPool, resp2dlvr);

ts.attach(ConvertResponderPool, DelivererPool ,resp2dlvr);

ts.attachSub(theCache, PhotoResponderPool);

ts.start () ;
}
catch(AssemblyException ae){}

The piece of code above can be encapsulated and made part of the main
application. The semantics of the request processing are clear and the devel-
oper can make adjustments if the need arises for more service types or more
concurrent users.

6.2 Case 2: A Standard Server

Our second case is a situation where there is a need to develop a standard
server that will be used to serve files to a large number of concurrent users.

6.2.1 The Requirement

A University department needs to devise a way of delivering content for
e-learning courses. They would like to have a simple language developed
that would allow course developers to markup text in a form consistent with
existing procedures for developing standard courses. This language must
be easily transformable into HTML for web distribution but remain flexible
enough for delivery to other media in the future. The course content would
potentially be accessed concurrently by hundreds of students.

Chapter 6. Case Studies 80

6.2.2 Proposed Server Assembly

The assembly that we propose for this situation is tuned to high concurrency
for a single type of resource. It will be a straightforward pipeline but with
a high degree of concurrency at each stage to cope with added load. We
will deploy a standard Dispatcher, a large pool of standard Transformers,
Authorisers, Custom Responders and Deliverers. We shall also deploy a
Cache at the Responder stage.

6.2.3 Customisation

The only component customisation required here is the Responder that will
transform the course content from the proprietary language to HTML pages.

6.2.4 Putting The Components Together

Once the custom Responder component has been developed, the parts of the
system can be assembled. The code below outlines the assembly steps.

TestServer ts = new TestServer ();
try
{

Producer <Connection>
dispatcherl = ts.addProducer (new SimpleDispatcher (null
,85) ,1);
Producer <Connection>
dispatcher2 = ts.addProducer (new SimpleSSLDispatcher (
null ,444) ,1);

One20neComponent <Connection ,Packet <Request>>
transfomerSet = ts.addOne20neComp(new SimpleTransformer
(null,null) ,200);

One20neComponent <Packet <Request >,Packet <Request >>
AuthoriserPool = ts.addOne20nePool(new Authoriser(
null ,null) ,100);

One20neComponent <Packet <Request >,Packet <Response>>
ContentResponders = ts.addOne20nePool (new
ContentResponder (null ,null) ,100);

Chapter 6. Case Studies 81

Proxy<Packet <Request >,Packet <Response>>
theCache = ts.addProxy(new SimpleCache(null,null,null
,null));

Consumer <Packet <Response>>
DelivererPool = ts.addConsumerPool (new
SimpleDeliverer (null) ,200) ;

Channel <Connection>
dsp2trn = ts.addConnector (new BufferedChan<Connection>("
toTrans" ,50));

Channel <Packet <Request >>
trn2cna = ts.addConnector (new BufferedChan<Packet<
Request >>("toAuth" ,50));

Channel <Packet <Request >>
cna2csh = ts.addConnector (new BufferedChan<Packet<
Request>>("toContentCache" ,50));

Channel <Packet <Response>>
resp2dlvr = ts.addConnector (new BufferedChan<Packet<
Response>>("toDeliverer" ,50));

ts.attach(dispatcherl, transfomerSet, dsp2trn);
ts.attach(dispatcher2, transfomerSet, dsp2trn);

ts.attach(transfomerSet, AuthoriserPool , trn2cna);

ts.attach (AuthoriserPool, theCache , cna2csh);

Chapter 6. Case Studies 82

ts.attach(theCache, DelivererPool , resp2dlvr);

ts.attachSub(theCache, ContentResponders);

ts.start () ;

}
catch(AssemblyException ae){}

6.3 Summary

This chapter demonstrated the process of assembling a server out of compo-
nents. The two case studies we presented gave some insight into the flexibility
of the framework in terms of service expansion and concurrency.

Chapter 7

Conclusion and Future Work

This dissertation reflects our work towards the realisation of the goals laid
out in Chapter 1. The objective was to develop a programming toolkit that
software developers could use to assemble a range of web servers. Our empha-
sis in this project was on the clear semantics of the operation of the servers
and the ease of use in the assembly of their components. We believe that we
have come far in the manifestation of this toolkit, while realising that work
can indeed be done to further refine our framework.

While it was not possible to expound on every detail of our implementa-
tion, we hope that this document highlighted the important technical achieve-
ments of the project.

We have provided an intelligible way to conceptualise web servers as a
collection of components and connectors organised in a particular topology.
This improves the transparency of the process flows and as a result makes
errors more visible and correctable. We believe that this is a key advantage of
our component framework over other modularity schemes used in mainstream
servers, such as the Apache architecture described in Chapter 2.

Our toolkit opens the door to experimentation with different configura-
tions and allows developers to add web based front ends to their applications
with relatively little effort. The toolkit itself is easily extensible, in particu-
lar, extra functionality could be added to a server object to improve on its
introspective capabilities. For example, a server could provide performance
predictions based on its current configuration or it could make itself visi-
ble and illustrate real-time processing data for the purpose of performance
analysis.

Future work that we envisage involves the rigorous analysis and testing of
performance characteristics. This is particularly important for servers that
will be used by a large number of concurrent users. This testing was not
possible in our project due to the elaborate setup that would have been re-

83

Chapter 7. Conclusion and Future Work 84

quired to simulate real world load demands. We would also like to see further
refinement of the existing components and development of new components
to fit into the current framework.

Appendix A

Application Programming
Interface

A.1 net.zuze.msc.csp

public class BufferedChan<Type>
extends java.lang.Object
implements Channel<Type>

Constructor Summary

BufferedChan()

This is the default constructor
BufferedChan(java.lang.String name)

This constructor takes the name of the channel
BufferedChan(java.lang.String name, int size)

This constructor takes the name and the size of the buffer

Method Summary

boolean canWrite()
Checks if there is room left in the buffer to write to
boolean enabled(Port.ReadListener listener)

Returns: true if the port has an element available; false if there's no
element ready; If the listener is non-null, then it is to be inform()ed when
next an element becomes available.

85

Chapter A. Application Programming Interface

86

Type read()

Read an element from the port if (or as soon as) one becomes available.
java.lang.String toString()

returns the Channel's name
void write(Type item)

Write an element to the port as soon as a reader is ready to accept it.

public class Chan<Type>
extends java.lang.Object
implements Channel<Type>

Field Summary

boolean free
false if there is a reader or writer waiting
boolean readerWaiting

true if there is a reader waiting

Constructor Summary

Chan()
This is the default constructor
Chan(java.lang.String name)

This constructor takes a channel name as an argument

Method Summary

boolean canWrite()
Checks if there is a reader waiting
boolean enabled(Port.ReadListener listener)

Returns: true if the port has an element available; false if there's no
element ready; If the listener is non-null, then it is to be inform()ed when
next an element becomes available.

Chapter A. Application Programming Interface

87

Type read()

Read an element from the port if (or as soon as) one becomes available.

java.lang.String toString()
returns the Channel’s name
void write(Type item)

Write an element to the port as soon as a reader is ready to accept it.

public interface Channel<Type>
extends Port.In<Type>, Port.Out<Type>

All Superinterfaces:
Port.In<Type>, Port.Qut<Type>
All Known Implementing Classes:

BufferedChan, Chan

no additional info

public interface Port

Nested Class Summary

static interface Port.In<Type>
static interface Port.Out<Type>
static interface Port.ReadListener

public static interface Port.In<Type>

All Known Subinterfaces:

Chapter A. Application Programming Interface

88

Channel<Type>
All Known Implementing Classes:
BufferedChan, Chan
Enclosing interface:

Port

Method Summary

boolean enabled(Port.ReadListener listener)

Returns: true if the port has an element available; false if there's no
element ready; If the listener is non-null, then it is to be inform()ed when
next an element becomes available.

Type read()

Read an element from the port if (or as soon as) one becomes available.

public static interface Port.Qut<Type>

All Known Subinterfaces:
Channel<Type>

All Known Implementing Classes:
BufferedChan, Chan

Enclosing interface:

Port

Method Summary

boolean canWrite()
Checks if there is a reader waiting
void write(Type item)

Write an element to the port as soon as a reader is ready to accept it.

Chapter A. Application Programming Interface

89

public static interface Port.ReadListener

Enclosing interface:

Port

Method Summary

void inform()

Gets invoked when a read occurs on a channel

Chapter A. Application Programming Interface

90

public abstract class Proc
extends java.lang.Object
implements Process

All Implemented Interfaces:
java.lang.Runnable, Process

Direct Known Subclasses:

AbstractResponder, ConnectionAggregator, FileAuthoriser,
SessionDecorator, SimpleDeliverer, SimpleDispatcher, SimpleRouter,
SimpleSSLDispatcher, SimpleTransformer

Field Summary

static int MAX_PRIORITY
static int MIN_PRIORITY
protected java.lang.String name
static int NORM_PRIORITY
protected int priority

protected static int proc

Count of anonymous processes

Constructor Summary

Proc()
This is the default constructor
Proc(java.lang.String name)

This constructor accepts the Proc’s name

Method Summary

void fork()

Start in a new thread; run in the background; dispose of thread on
termination

void fork(Process.Epilogue epilogue)
..call (after.invoke()) on termination, before disposing of thread.

abstract void run()

Chapter A. Application Programming Interface

91

Run to completion (in the current thread)
void serve()

Start as a server in a new thread; run in the background; dispose of thread
on termination

void sleep(long ms)
initiates a sleep
Proc withPriority(int priority)

assigns the priority

public interface Process
extends java.lang.Runnable

All Superinterfaces:
java.lang.Runnable
All Known Implementing Classes:

AbstractResponder, ConnectionAggregator, FileAuthoriser,
FileServiceResponder, Proc, SessionDecorator, SimpleCache,
SimpleDeliverer, SimpleDispatcher, SimpleRouter, SimpleSSLDispatcher,
SimpleTransformer, TimeResponder, TraceResponder

Nested Class Summary

static interface Process.Epilogue

Method Summary

void fork()

Start in a new thread; run in the background; dispose of thread on
termination

void fork(Process.Epilogue after)

..call (after.invoke()) on termination, before disposing of thread.
void run()

Run to completion (in the current thread)

void serve()

Chapter A. Application Programming Interface

92

Start as a server in a new thread; run in the background; dispose of thread
on termination

public static interface Process.Epilogue

Enclosing interface:

Process

Method Summary

void invoke()

Get's invoked at the completion of the process

Chapter A. Application Programming Interface

A.2 net.zuze.msc.artefacts

public abstract class AbstractMessage
extends java.lang.Object
implements Message

Direct Known Subclasses:

Request, Response

Constructor Summary

AbstractMessage()

This is the default constructor

Method Summary

Session getSession()

This method returns the session object associated with this message (if
any)

void setSession(Session s)

This method is used for attaching a session object to the message

public class CachedRawResponse
extends Response

Field Summary

long timeExpires

This is the time when the Cached Response becomes stale

Constructor Summary

CachedRawResponse(Response r)

Chapter A. Application Programming Interface

94

This is the default constructor

Method Summary

java.io.InputStream getData()

Sets up a new InputStream on the entity byte array which was copied from
the original Response

java.lang.String getDataType()

Delegates to the underlying base Response: Returns the content type of
the data in the Response

java.util.Properties getHeaders()
Delegates to the underlying base Response: Retrieves the header mappings
java.lang.String getlLength()

Delegates to the underlying base Response: Retrieves the length of the
entity body

java.lang.String getStatus()

Delegates to the underlying base Response: Retrieves the Response Status
Code

public class CachedWrappedResponse
extends Response

Constructor Summary

CachedWrappedResponse(CachedRawResponse ¢, java.lang.String theConn,
java.lang.String theTimeOut)

¢ - The raw cached response
theConn - The value of the @Connection header from the request
theTimeOut - The value of the @Timeout header from the request

Method Summary

java.io.InputStream getData()

Delegates to the underlying cached response. Sets up a new InputStream
on the entity byte array which was copied from the original Response

Chapter A. Application Programming Interface

95

java.lang.String getDataType()

Delegates to the underlying cached Response: Returns the content type of
the data in the Response

java.util.Properties getHeaders()

Delegates to the underlying cached Response: Returns the updated
headers with the connection information added

java.lang.String getLength()

Delegates to the underlying cached Response: Retrieves the length of the
entity body

java.lang.String getStatus()

Delegates to the underlying cached Response: Retrieves the Response
Status Code

public class ChallengeRequest
extends Request

Constructor Summary

ChallengeRequest(java.lang.String realm, java.lang.String message, java.lang.String
authType)

realm - The Realm that the requested resource is located in
message - The ‘unauthorised!” message
authType - Indicates the strength of authentication (Basic or Digest)

Method Summary

java.util.Set<java.lang.String> getFormFieldSet()
Non Functional

Entity.File getFormFile(java.lang.String key)
Non Functional

java.lang.String getFormString(java.lang.String key)
Non Functional

java.io.InputStream getNonFormData(int seq)

Non Functional

Chapter A. Application Programming Interface 96

void release()

Non Functional

public class ChallengeResponse
extends Response

Constructor Summary

ChallengeResponse(java.lang.String realm, java.lang.String authType, java.lang.String
msg)

authType - The type of Authentication that this challenge demands (Basic
or Digest)

realm - The realm to which authentication is required

msg - The ‘unauthorised!" message to the user

Method Summary

java.io.InputStream getData()

Returns the Stream of data for the body
java.lang.String getDataType()

Returns the type of the data in the body
java.util.Properties getHeaders()

Returns the Mapping of the header names to their values
java.lang.String getlLength()

Returns the length of the body of the response
java.lang.String getStatus()

returns the HTTP response status code

public class Connection
extends java.lang.Object

Field Summary

Chapter A. Application Programming Interface

97

java.io.lnputStream in
The InputStream
java.io.OutputStream out
The OutputStream
java.net.InetAddress source

The InetAddress

Constructor Summary

Connection(java.net.Socket soc)

soc - The original socket

Method Summary

void close()
Used to close a connection
Port.Out getPath(Proc p)

Retrieves the output port that the connection should go down when there
is a choice

boolean islnputShutDown()
Checks if the InputStream has been shutdown
void setPath(Proc p, Port.Out po)

This is invoked by a Connection Aggregator the first time it sees a
connection and has decided which path to allocate it to

void shutDownlInput()

Shuts down the InputStream for graceful closing

public class ErrorRequest
extends Request

Constructor Summary

Chapter A. Application Programming Interface

98

ErrorRequest(java.lang.String et, java.lang.String txt, Request r)

et - the HTTP error type
txt - the message for the client
r - the original request

ErrorRequest(java.lang.String et, java.lang.String txt)

This constructor only gets called from the transformer and adds the ‘close’
command to the error to tell the client that it won't accept any more
Requests through the connection

et - the HTTP error type

txt - the message for the client

Method Summary

java.util.Set<java.lang.String> getFormFieldSet()
Non Functional

Entity.File getFormFile(java.lang.String key)
Non Functional

java.lang.String getFormString(java.lang.String key)
Non Functional

java.io.InputStream getNonFormData(int seq)
Non Functional

void release()

Non Functional

public class ErrorResponse
extends Response

Constructor Summary

ErrorResponse(java.lang.String status, java.lang.String msg)

status - The HTTP error code
msg - The Message to the client

Method Summary

Chapter A. Application Programming Interface

99

java.io.InputStream getData()

Returns the Stream of data for the body
java.lang.String getDataType()

Returns the type of the data in the body
java.util.Properties getHeaders()

Returns the Mapping of the header names to their values
java.lang.String getlLength()

Returns the length of the body of the response
java.lang.String getStatus()

Returns the HTTP response status code
void setStatus(java.lang.String s)

updates the status code of the response, ok, bad, etc

public class FileResponse
extends Response

Constructor Summary

FileResponse(java.io.InputStream is, java.lang.String mime, java.lang.String length)

is - the input stream to the data
mime - the MIME type of the data
length - the length of the data

Method Summary

java.io.InputStream getData()

Returns the Stream of data for the body
java.lang.String getDataType()

Returns the type of the data in the body
java.util.Properties getHeaders()

Returns the Mapping of the header names to their values

java.lang.String getlLength()

Chapter A. Application Programming Interface

100

Returns the length of the body of the response
java.lang.String getStatus()

returns the HTTP response status code

public interface Message

All Known Implementing Classes:

AbstractMessage, CachedRawResponse, CachedWrappedResponse,

ChallengeRequest, ChallengeResponse, ErrorRequest, ErrorResponse,

FileResponse, Request, Response, SimpleRequest, StatusResponse,
TimeResponse, TraceResponse

Method Summary

Session getSession()
This is used to retrieve the session attached to a message
void setSession(Session s)

This sets the session that is attached to the message

public class Packet<TYPE extends Message>
extends java.lang.Object

Constructor Summary

Packet(TYPE m, Connection c)

m - the message object
c - the connection that it is associated with

Method Summary

Connection getConnection()

Retrieve the connection context

Chapter A. Application Programming Interface 101

TYPE getMessage()

Retrieve the message (Request or Response) from the Packet

public abstract class Request
extends AbstractMessage

Direct Known Subclasses:

ChallengeRequest, ErrorRequest, SimpleRequest

Constructor Summary

Request()

This is the default constructor

Method Summary

FileResponse getFileResponse(java.io.InputStream is, java.lang.String mime,
java.lang.String length)

Used by a Responder to turn a File Request into a File Response
abstract java.util.Set<java.lang.String> getFormFieldSet()

Returns the set of fields from the form data
abstract Entity.File getFormFile(java.lang.String key)

Abstract method which when implemented retrieves the File that was
uploaded with the form field specified in the key

abstract java.lang.String getFormString(java.lang.String key)

An abstract method which when implemented retrieves the string version
of a form field

java.util.Set<java.lang.String> getHeaderSet()
Retrieves the set of header names in the Request
java.lang.String getHeaderValue(java.lang.String id)
gets the header value for a header id
java.lang.String getMethod()

Retrieves the method for the request

Chapter A. Application Programming Interface 102

abstract java.io.lnputStream getNonFormData(int seq)

Abstract method which when implemented returns data that was uploaded
as part of the entity but not in a form

java.lang.String getURI()
retrieves the URI for the request
java.lang.String getVersion()
retrieves the HT TP version of the request
abstract void release()
Releases the resources used up by the request (temp files on disk)
void removeHeader(java.lang.String key)
Removes a header with a specific key
void setHeader(java.lang.String key, java.lang.String value)

used to set the value for a header in the request

public abstract class Response
extends AbstractMessage

Direct Known Subclasses:

CachedRawResponse, CachedWrappedResponse, ChallengeResponse,
ErrorResponse, FileResponse, StatusResponse, TimeResponse,
TraceResponse

Constructor Summary

Response()

This is the default constructor

Method Summary

abstract java.io.InputStream getData()
Returns the Stream of data for the body

abstract java.lang.String getDataType()
Returns the type of the data in the body

Chapter A. Application Programming Interface 103

abstract java.util.Properties getHeaders()

Returns the Mapping of the header names to their values
abstract java.lang.String getlLength()

Returns the length of the body of the response
abstract java.lang.String getStatus()

returns the HTTP response status code

public class RouteAlgorithm
extends java.lang.Object
implements RoutingAlgorithm

Constructor Summary

RouteAlgorithm()

This is the default constructor

Method Summary

java.util.Set<java.lang.String> getServices()

This method returns the set of message types that the algorithm can
identify

java.lang.String interpret(Request r)

This method looks at the URI and determines the type of resource that is
being requested. The name of the resource is returned.

public class SimpleRequest
extends Request

Constructor Summary

SimpleRequest(Connection conn) throws BadRequestException,
InternalServerException, TimeoutException

Chapter A. Application Programming Interface 104

Throws:

BadRequestException - Can happen if Request is Malformed, etc
InternalServerException - An unexplained error

TimeoutException - Happens when no data comes in on the InputStream
for a long time

Parameters:
conn - the connection that the request is associated with

Method Summary

protected void finalize()

The code to clean up the object when done
java.util.Set<java.lang.String> getFormFieldSet()

This gets the set of keys in the contentFields
Entity.File getFormFile(java.lang.String key)

Retrieves a file that was uploaded as part of a form
java.lang.String getFormString(java.lang.String key)

Retrieves the String representation of a form field
java.io.InputStream getNonFormData(int index)

Retrieve data files that were uploaded without a form
void release()

Releases resources like temporary files

public class StatusResponse
extends Response

Constructor Summary

StatusResponse(java.lang.String status)

status - The HT TP status code

Method Summary

java.io.InputStream getData()

Chapter A. Application Programming Interface 105

Returns the InputStream of data for the body
java.lang.String getDataType()

Returns the type of the data in the body
java.util.Properties getHeaders()

Returns the Mapping of the header names to their values
java.lang.String getLength()

Returns the length of the body of the response
java.lang.String getStatus()

returns the HT TP status code

public class TimeResponse
extends Response

Constructor Summary

TimeResponse()
The default constructor
TimeResponse(java.lang.String s)

s - The custom message

Method Summary

java.io.InputStream getData()

Returns the InputStream of data for the body
java.lang.String getDataType()

Returns the type of the data in the body
java.util.Properties getHeaders()

Returns the Mapping of the header names to their values
java.lang.String getLength()

Returns the length of the body of the response
java.lang.String getStatus()

returns the HTTP status code

Chapter A. Application Programming Interface 106

public class TraceResponse
extends Response

Constructor Summary

TraceResponse(Request req)

req - The Request that asked for the Trace

Method Summary

java.io.InputStream getData()

Returns the InputStream of data for the body, which in this case comprises
the original request

java.lang.String getDataType()

Returns the type of the data in the body
java.util.Properties getHeaders()

Returns the Mapping of the header names to their values
java.lang.String getlLength()

Returns the length of the body of the response
java.lang.String getStatus()

returns the HTTP status code

A.3 net.zuze.msc.artefacts.util

public interface Entity

Nested Class Summary

static interface Entity.File

An individual file that has been uploaded

Chapter A. Application Programming Interface 107

public static interface Entity.File

Enclosing interface:

Entity

Method Summary

java.io.InputStream getInputStream()

Retrieves the InputStream to the file

public interface Session

All Known Implementing Classes:

SimpleSession

Method Summary

java.lang.Object getAttribute(java.lang.String key)
Retrieves an attribute from the Session
java.util. Enumeration<java.lang.String> getAttributeNames()
Retrieves the names of all the attributes in the session
long getCreationTime()
Retrieves the time that the session was created
java.lang.String getld()
Retrieves the session's id value
long getTimeout()
Retrieves the idle timeout value
boolean hasExpired()
Indicates if the session has been idle too long
void invalidate()

Makes a session object invalid

Chapter A. Application Programming Interface

108

void setAttribute(java.lang.String key, java.lang.Object o)
sets an attribute in the session
void setTimeout(long t)

Sets how long the session can remain in memory without having been
accessed

public class SessionMap
extends java.lang.Object

Constructor Summary

SessionMap(int cleanuptime)

cleanuptime - The interval time between cleanup runs

Method Summary

Session get(java.lang.String key)
Retrieves a session from memory
void put(java.lang.String key, Session value)
puts a Session in memory
void remove(java.lang.String key)

Removes a Session from memory

public class SimpleSession
extends java.lang.Object
implements Session

Constructor Summary

SimpleSession(java.lang.String id, int tout)

id - The Session ID
tout - The Session timeout

Chapter A. Application Programming Interface 109

Method Summary

java.lang.Object getAttribute(java.lang.String key)
Retrieves an attribute from the session
java.util. Enumeration<java.lang.String> getAttributeNames()
Retrieves the names of all the attributes in the Session object
long getCreationTime()
Retrieves the time the Session was created
java.lang.String getld()
Retrieves the ID of the Session
long getTimeout()
Retrieves the idle timeout period value
boolean hasExpired()
Returns a boolean value indicating if the Session has been idle too long
void invalidate()
Sets the valid state to false
void setAttribute(java.lang.String key, java.lang.Object o)
Sets the value of an attribute into the session
void setTimeout(long t)

Sets the idle timeout for the session

public class SmartHashMap<KeyType,ValueType>
extends java.lang.Object

Constructor Summary

SmartHashMap(int size)

size - The minimum guaranteed size

Method Summary

ValueType get(KeyType key)

Chapter A. Application Programming Interface 110

Retrieve an item from the Cache
void put(KeyType key, ValueType value)

Puts a new item in the Cache

A.4 net.zuze.msc.util

public class LineReader
extends java.io.BufferedInputStream

Field Summary

java.io.InputStream base

handle on the base stream

Constructor Summary

LineReader(java.io.InputStream base)

base - This is the InputStream that will be turned into a LineReader

Method Summary

int bytesRead()

Returns the number of bytes read so far
int read()

overridden method, keeps a count of bytesRead
java.lang.String readBody(int len)

This method is used to read in a urlencoded entity
java.lang.String readLine()

Reads a line up to an eol sequence consisting of: \r, \r \n, or \n.

Chapter A. Application Programming Interface 111

public class ServerSettings
extends java.lang.Object

Constructor Summary

This is a singleton, so the constructor is not public

Method Summary

boolean allowDirList()

Returns whether or not directory listings should be allowed
int CacheMaxAge()

Returns the maximum age for cached files before they go stale
java.lang.Object clone()

This is not allowed since ServerSettings is a singleton
int connectionPollTime()

Returns the interval time between polls for data on the socket InputStream
int connectionTimeout()

Returns the maximum idle time of that a connection is allowed to have
boolean doCache()

Indicates whether or not caching information will be put in outgoing
Responses

static ServerSettings getlnstance()

It is a singleton, so return the single instance
java.lang.String homeDir()

Returns the location of the home directory for the file server
int maxRequests()

Returns the maximum number of requests that the server will process
through a particular connection

int numTransformers()
Returns the number of Transformers in the system
int serverPort()

The default Port that the Dispatcher should use

Chapter A. Application Programming Interface 112

boolean traceConnectionDumps()

true if notification should be given about connections being dumped after
the maximum number of Requests have been received through it

boolean traceConnections()

Returns a boolean value to indicate whether notification should be given
when new connections are received by the Transformer

boolean traceConnectionTimeouts()

Returns true if notification of connection timeouts should be output
boolean traceExceptions()

Returns true if exception information should be output
boolean traceService()

Returns true if notification should be given when the Transformer has
processed a Request

public class ServerUtils
extends java.lang.Object

Constructor Summary

ServerUtils()

This is the default constructor

Method Summary

static java.lang.String encodeUri(java.lang.String uri)

Applies the standard URL encoding to a String
static java.lang.String getTime()

Returns the current time in the correct HTTP time format
static java.lang.String getTime(java.util.Date d)

Returns the value of the Date Supplied in the correct HTTP time format

Chapter A. Application Programming Interface 113

A.5 net.zuze.msc.protocols

public class HTTP
extends java.lang.Object

Constructor Summary

This is a singleton, so the constructor is not public

Method Summary

java.lang.Object clone()

This is not allowed since HTTP is a singleton
java.lang.String getCode(java.lang.String status)

Retrieves the status code for a given status name
static HTTP getInstance()

Returns the active instance of the HTTP Class
java.lang.String getMimeType(java.lang.String ext)

Retrieves a MIME type for a given file extension

A.6 net.zuze.msc.Exceptions

public class AssemblyException
extends java.lang.Exception

Constructor Summary

AssemblyException(java.lang.String s)

s - The exception message

Chapter A. Application Programming Interface 114

public class BadRequestException
extends java.lang.Exception

Constructor Summary

BadRequestException(java.lang.String s)

s - The exception message

public class ForbiddenException
extends java.lang.Exception

Constructor Summary

ForbiddenException(java.lang.String s)

s - The exception message

public class InternalServerException
extends java.lang.Exception

Constructor Summary

InternalServerException(java.lang.String s)

s - The exception message

public class NoServiceException
extends java.lang.Exception

Constructor Summary

NoServiceException(java.lang.String s)

Chapter A. Application Programming Interface 115

s - The exception message

public class RedirectException
extends java.lang.Exception

Field Summary

java.lang.String location
The URL that the client is being redirected to

java.lang.String location

The message about the redirection

Constructor Summary

RedirectException(java.lang.String location, java.lang.String msg)

location - The new location that the client is being redirected to
msg - The message to the client

public class TimeoutException
extends java.lang.Exception

Constructor Summary

TimeoutException(java.lang.String s)

s - The exception message

A.7 net.zuze.msc.skeletons

public interface Authoriser<Type>

Chapter A. Application Programming Interface

116

extends One20neComponent<Type, Type>

All Superinterfaces:

Component, Consumer<Type>, One20neComponent<Type, Type>,
Producer<Type>

All Known Implementing Classes:

FileAuthoriser

public interface Cache<InType,OutType>
extends Proxy<InType,OutType>

All Superinterfaces:

Component, Consumer<InType>,
One20neComponent<InType,OutType>, Producer<QOutType>,
Proxy<InType,OutType>

All Known Implementing Classes:

SimpleCache

public interface Component

All Known Subinterfaces:

Authoriser<Type>, Cache<InType,OutType>, Consumer<InType>,
Deliverer<Type>, Dispatcher<Type>, One2NComponent<Type>,
One20neComponent<InType,OutType>, Producer<QutType>,
Proxy<InType,OutType>, Responder<InType,OutType>,
Router<Type>, Transformer<InType,OutType>

All Known Implementing Classes:

AbstractResponder, ConnectionAggregator, FileAuthoriser,
FileServiceResponder, SessionDecorator, SimpleCache, SimpleDeliverer,
SimpleDispatcher, SimpleRouter, SimpleSSLDispatcher,
SimpleTransformer, TimeResponder, TraceResponder

Chapter A. Application Programming Interface 117

Method Summary

void start()
starts one thread
void start(int num)
starts num threads
void stop()

stops the component

public interface Consumer<InType>
extends Component

Method Summary

Consumer<InType> getComponentCopy()
Returns a new copy of this type of component
void setInputPort(Port.In<InType> in)

Assigns the Input Port for the Consumer Component

public interface Deliverer<Type>
extends Consumer<Type>

All Superinterfaces:
Component, Consumer<Type>
All Known Implementing Classes:

SimpleDeliverer

public interface Dispatcher<Type>

Chapter A. Application Programming Interface 118

extends Producer<Type>

All Superinterfaces:
Component, Producer<Type>
All Known Implementing Classes:

SimpleDispatcher, SimpleSSLDispatcher

public interface One2NComponent<Type>
extends Consumer<Type>

All Superinterfaces:
Component, Consumer<Type>
All Known Subinterfaces:
Router<Type>
All Known Implementing Classes:

ConnectionAggregator, SimpleRouter

Method Summary

void setOutputPort(java.lang.String id, Port.Out<Type> o)
Assigns ‘0’ to the output port identified by ‘id’

public interface One20neComponent<InType,OutType>
extends Producer<QOutType>, Consumer<InType>

All Superinterfaces:
Component, Consumer<InType>, Producer<OutType>
All Known Subinterfaces:

Authoriser<Type>, Cache<InType,OutType>, Proxy<InType,OutType>,
Responder<InType,OutType>, Transformer<InType,OutType>

Chapter A. Application Programming Interface

119

All Known Implementing Classes:

AbstractResponder, FileAuthoriser, FileServiceResponder,
SessionDecorator, SimpleCache, SimpleTransformer, TimeResponder,
TraceResponder

Method Summary

void setOutputPort(java.lang.String id, Port.Out<Type> o)

Assigns ‘0’ to the output port identified by ‘id’

public interface Producer<QOutType>
extends Component

Method Summary

void setOutputPort(Port.Out<OutType> out)

Assigns the Output Port for the Producer Component

public interface Proxy<InType,OutType>
extends One20neComponent<InType,OutType>

All Superinterfaces:

Component, Consumer<InType>,
One20neComponent<InType,OutType>, Producer<OutType>

All Known Subinterfaces:
Cache<InType,OutType>
All Known Implementing Classes:

SessionDecorator, SimpleCache, SubSystemCap

Method Summary

void setSublnput(Port.In<OutType> in)

Chapter A. Application Programming Interface

120

This is the input port for data from the enclosing component
void setSubOutput(Port.Out<InType> out)

This is the output port for data to the enclosing component

public interface Responder<InType,OutType>
extends One20neComponent<InType,OutType>

All Superinterfaces:

Component, Consumer<InType>,
One20neComponent<InType,OutType>, Producer<OutType>

All Known Implementing Classes:

AbstractResponder, FileServiceResponder, SimpleCache, TimeResponder,
TraceResponder

public interface Router<Type>
extends One2NComponent<Type>

All Superinterfaces:
Component, Consumer<Type>, One2NComponent<Type>
All Known Implementing Classes:

SimpleRouter

public interface RoutingAlgorithm

All Known Implementing Classes:

RouteAlgorithm

Method Summary

Chapter A. Application Programming Interface 121

java.util.Set<java.lang.String> getServices()
Returns a set of all the types of requests that it can identify
java.lang.String interpret(Request r)

Returns the name of the type of Request ‘r’

public interface Server

All Known Implementing Classes:

TestServer

Method Summary

<T> Channel<T> addConnector(Channel<T> c)
Adds a Channel to the system
<T> Consumer<T> addConsumer(Consumer<T> cons, int num)
Adds a Consumer Component to the system with num child threads
<T> Consumer<T> addConsumerPool(Consumer<T> cons, int num)
Adds a Consumer Pool to the system with num cloned Consumers
<T> One2NComponent<T> addOne2NComp(One2NComponent<T> 02n)
Adds a One2NComponent to the system.

<T,Y> One20neComponent<T,Y> addOne20neComp(One20neComponent<T,Y>
020, int num)

Adds a One20neComponent to the system with num child threads

<T,Y> One20neComponent<T,Y> addOne20nePool(One20neComponent<T,Y >
020, int num)

Adds a One20neComponent Pool to the system with num cloned
One20neComponents

<T> Producer<T> addProducer(Producer<T> prod, int num)
Adds a Producer to the system with num child threads
<T,Y> Proxy<T,Y> addProxy(Proxy<T,Y> prox)
Adds a Proxy to the system

Chapter A. Application Programming Interface 122

<T> void attach(One2NComponent<T> producer, java.lang.String outID,
Consumer<T> consumer, Channel<T> c)

Attaches the OutID port of the One2NComponent to the Consumer using
Channel ¢

<T> void attach(Producer<T> producer, Consumer<T> consumer, Channel<T> c)

Attaches the producer's output port to the consumer's input port via
Channel ¢

<T1,T2> void attachSub(Proxy<T1,T2> prox, One20neComponent<T1,T2> sub)
Attaches a One20neComponent as a subordinate of a Proxy

void start()
Starts all the components in the Server

void stop()

Stops the Server

public interface Transformer<InType,OutType>
extends One20OneComponent<InType,OutType>

All Superinterfaces:

Component, Consumer<InType>,
One20neComponent<InType,OutType>, Producer<OutType>

All Known Implementing Classes:

SimpleTransformer

A.8 net.zuze.msc.simpleserver

public abstract class AbstractResponder
extends Proc
implements Responder<Packet<Request>,Packet<Response>>

Constructor Summary

Chapter A. Application Programming Interface

123

AbstractResponder()

This is the default constructor

Method Summary

void run()
The processing of Requests is set off from here
void setInputPort(Port.In<Packet<Request>> in)
Assigns the Input Port for the Component
void setOutputPort(Port.Out<Packet<Response>> out)
Assigns the Output Port for the Component
void start()
starts one thread
void start(int num)
starts num threads
void stop()

stops the component

public class ConnectionAggregator<T extends Packet<Message>>
extends Proc
implements One2NComponent<T >

Constructor Summary

ConnectionAggregator(Port.In<T> in, int numOfOuts)

in - The input port
numOfOuts - The number of output ports

Method Summary

void run()
Messages are input and distributed from here

void setlnputPort(Port.In<T> in)

Chapter A. Application Programming Interface

124

Sets the input port
void setOutputPort(java.lang.String id, Port.Out<T> o)
Sets one of the output ports
void start()
forks 1 child thread
void start(int num)
forks num child threads
void stop()

stops the component

public class FileAuthoriser
extends Proc
implements Authoriser<Packet<Request>>

Constructor Summary

FileAuthoriser(Port.In<Packet<Request>> in, Port.Out<Packet<Request>> out)

in - The input port
out - The output port

Method Summary

void run()
Reads in request packets and checks for authorisation
void setInputPort(Port.In<Packet<Request>> in)
Sets the input port
void setOutputPort(java.lang.String id, Port.Out<Packet<Request>> o)
Sets one of the output ports
void start()
forks 1 child thread
void start(int num)
forks num child threads
void stop()

stops the component

Chapter A. Application Programming Interface 125

public class FileServiceResponder
extends AbstractResponder

Constructor Summary

FileServiceResponder(Port.In<Packet<Request>> in,
Port.Out<Packet<Response>> out)

in - The input port
out - The output port

Method Summary

protected Response doDELETE(Request r)

Does nothing, may eventually be implemented
protected Response doFORM(Request r)

This method currently passes on control to doPost
protected Response doGET (Request r)

This performs the retrieval of the file and the construction of the
FileResponse object

protected Response doPOST(Request r)

This method implements posting data to a resource
protected Response doPUT(Request r)

Does nothing, may eventually be implemented
void toExecute(Packet<Request> job)

The code for servicing a request is here

public class SessionDecorator
extends Proc
implements Proxy<Packet<Request>,Packet<Response>>

Constructor Summary

SessionDecorator(Port.In<Packet<Request>> in, Port.In<Packet<Response>> rin,
Port.Out<Packet<Response>> out, Port.Out<Packet<Request>> rout)

Chapter A. Application Programming Interface

126

in - The Request input port

rin - The Response input port from the Responder
out - The Response output port

rout - The Request output port to the Responder

Method Summary

void run()
The processing of Requests is set off from here
void setlnputPort(Port.In<Packet<Request>> in)
Assigns the Input Port for the Component
void setOutputPort(Port.Out<Packet<Response>> out)
Assigns the Output Port for the Component
void setSublnput(Port.In<Packet<Response>> in)
Assigns the Input Port for data from the enclosing component
void setSubOutput(Port.Out<Packet<Request>> out)
Assigns the Output Port for data to the enclosing component
void start()
starts one thread
void start(int num)
starts num threads
void stop()

stops the component

public class SimpleCache
extends AbstractResponder
implements Cache<Packet<Request>,Packet<Response>>

Constructor Summary

SimpleCache(Port.In<Packet<Request>> in, Port.In<Packet<Response>> rin,
Port.Out<Packet<Response>> out, Port.Out<Packet<Request>> rout)

in - The Request input port

Chapter A. Application Programming Interface

127

rin - The Response input port from the Responder

out - The Response output port

rout - The Request output port to the Responder for requests that the
cache cannot service

Method Summary

void setSublnput(Port.In<Packet<Response>> in)
Assigns the Input Port for data from the enclosing component
void setSubOutput(Port.Out<Packet<Request>> out)

Assigns the Output Port for data to the enclosing component

public class SimpleDeliverer
extends Proc
implements Deliverer<Packet<Response>>

Constructor Summary

SimpleDeliverer(Port.In<Packet<Response>> in)

in - The input Response channel

Method Summary

void run()
The delivery of Responses is set off from here
void setInputPort(Port.In<Packet<Response>> in)
Assigns the Input Port for the Component
void start()
starts one thread
void start(int num)
starts num threads
void stop()

stops the component

Chapter A. Application Programming Interface 128

public class SimpleDispatcher
extends Proc
implements Dispatcher<Connection>

Constructor Summary

SimpleDispatcher(Port.Out<Connection> out, int port)

out - This is the front end of the Connection channel to a Transformer
port - This is the port number that the server will listen on

Method Summary

void run()

Socket connections are accepted from here and Connections channelled to
a Transformer

void setOutputPort(Port.Out<Connection> out)
Assigns the Output Port for the Component
void start()
starts one thread
void start(int num)
starts num threads
void stop()

stops the component

public class SimpleRouter
extends Proc
implements Router<Packet<Request>>

Constructor Summary

SimpleRouter(Port.In<Packet<Request>> in, RoutingAlgorithm alg)

in - the input request port
alg - the algorithm used to distinguish one type of request from another

Chapter A. Application Programming Interface 129

Method Summary

void run()

The routing algorithm is applied to packets which are then channelled to
the appropriate responder

void setInputPort(Port.In<Packet<Request>> in)
Assigns the Input Port for the Component
void setOutputPort(java.lang.String id, Port.Out out)
Assigns one of the Output Ports for the Router
void start()
starts one thread
void start(int num)
starts num threads
void stop()

stops the component

public class SimpleSSLDispatcher
extends Proc
implements Dispatcher<Connection>

Constructor Summary

SimpleSSLDispatcher(Port.Out<Connection> out, int port)

out - This is the front end of the Connection channel to a Transformer
port - This is the port number that the server will listen on

Method Summary

void run()

SSL Socket connections are accepted from here and Connections
channelled to a Transformer

void setOutputPort(Port.Out<Connection> out)

Assigns the Output Port for the Component

Chapter A. Application Programming Interface

130

void start()
starts one thread
void start(int num)
starts num threads
void stop()

stops the component

public class SimpleTransformer
extends Proc
implements Transformer<Connection,Packet<Request>>

Constructor Summary

SimpleTransformer(Port.In<Connection> in, Port.Out<Packet<Request>> out)

in - The Connection Input Port from a Dispatcher
out - The Request Output Port towards a Responder

Method Summary

void run()

Connections are taken off the channel one by one and turned into
Requests here

void setlnputPort(Port.In<Connection> in)
Assigns the Input Port for the Component
void setOutputPort(Port.Out<Packet<Request>> out)
Assigns the Output Port for the Component
void start()
starts one thread
void start(int num)
starts num threads
void stop()

stops the component

Chapter A. Application Programming Interface

131

public class SubSystemCap<T,Y>
extends java.lang.Object
implements Proxy<T,Y>

Constructor Summary

SubSystemCap()

default constructor

Method Summary

One20neComponent<T,Y> getComponentCopy()
Returns a new copy of this type of component
void run()
The processing of Requests is set off from here
void setlnputPort(Port.In<Packet<Request>> in)
Assigns the Input Port for the Component
void setOutputPort(Port.Out<Packet<Response>> out)
Assigns the Output Port for the Component
void setSublnput(Port.In<Packet<Response>> in)
Assigns the Input Port for data from the enclosing sub-system
void setSubOutput(Port.Out<Packet<Request>> out)
Assigns the Output Port for data to the enclosing sub-system
void start()
starts one thread
void start(int num)
starts num threads
void stop()

stops the component

public class TestServer

Chapter A. Application Programming Interface 132

extends java.lang.Object
implements Server

Method Summary

<T> Channel<T> addConnector(Channel<T> c)
Adds a Channel to the system
<T> Consumer<T> addConsumer(Consumer<T> cons, int num)
Adds a Consumer Component to the system with num child threads
<T> Consumer<T> addConsumerPool(Consumer<T> cons, int num)
Adds a Consumer Pool to the system with num cloned Consumers
<T> One2NComponent<T> addOne2NComp(One2NComponent<T> 02n)
Adds a One2NComponent to the system.

<T,Y> One20neComponent<T,Y> addOne20neComp(One20neComponent<T,Y>
020, int num)

Adds a One20neComponent to the system with num child threads

<T,Y> One20neComponent<T,Y> addOne20nePool(One20neComponent<T,Y>
020, int num)

Adds a One20neComponent Pool to the system with num cloned
One20neComponents

<T> Producer<T> addProducer(Producer<T> prod, int num)
Adds a Producer to the system with num child threads
<T,Y> Proxy<T,Y> addProxy(Proxy<T,Y> prox)
Adds a Proxy to the system

<T> void attach(One2NComponent<T> producer, java.lang.String outlD,
Consumer<T> consumer, Channel<T> c)

Attaches the OutID port of the One2NComponent to the Consumer using
Channel ¢

<T> void attach(Producer<T> producer, Consumer<T> consumer, Channel<T> c)

Attaches the producer's output port to the consumer's input port via
Channel ¢

<T1,T2> void attachSub(Proxy<T1,T2> prox, One20neComponent<T1,T2> sub)
Attaches a One20neComponent as a subordinate of a Proxy

void start()
Starts all the components in the Server

void stop()
Stops the Server

Chapter A. Application Programming Interface 133

public class TimeResponder
extends AbstractResponder

Constructor Summary

TimeResponder(Port.In<Packet<Request>> in, Port.Out<Packet<Response>> out)

in - The channel for the request packets
out - the channel for the time responses

public class TraceResponder
extends AbstractResponder

Constructor Summary

TraceResponder(Port.In<Packet<Request>> in, Port.Out<Packet<Response>> out)

in - The channel for the request packets
out - the channel for the trace responses

Appendix B
Contents of The CD

B.1 /dissertation

This document in PDF form.

B.2 /sourcecode

The Java source files.

B.3 /javadoc

The HTML version of the Application Programming Interface.

B.4 /build

The Java classes and dependency files.

134

Bibliography

[1] D. Batory: A Tutorial on Feature Oriented Programming and Product-
Lines, IEEE (2002)

2] Bowen R., Coar k.: Apache Server Unleashed, Sams (2000)

[3] Czarnecki K., Eisenecker U.W.: Generative Programming, Addison-
Wesley (2000)

[4] Fielding et al: Hypertext Transfer Protocol - HT'TP/1.1, Network Work-
ing Group, RFC 2616 (1999)

[5] Gamma, Helm, Johnson, Vlissides: Design Patterns. Elements of
Reusable Object-Oriented Software, Addison Wesley (1994)

[6] Garlan, Monroe, and Wile: Acme: Architectural Descriptions of
Component-Based Systems, Foundations of Component-Based Systems
pp 47-68, Cambridge University Press (2000)

[7] Gourley D., Totty B.: HT'TP The Definitive Guide, O'Reilly (2002)

[8] IBM Research:
Subject Oriented Programming, http://www.research.ibm.com/sop/, Re-
trieved (July 29th, 2005)

[9] IBM Research:
Hyper/J: Multi-Dimensional Separation of Concerns for Java,

hitp:/ /www.research.ibm.com/hyperspace/HyperJ /HyperJ.htm, Re-
trieved (July 30th, 2005)

[10] IBM Research:
The AspectJ Project for Eclipse, http://eclipse.orq/aspectj/, Retrieved
(July 30th, 2005)

[11] Miles, Russ: Aspect] Cookbook, O’Reilly (2005)

135

BIBLIOGRAPHY 136

[12] Nierstrasz O., Tsichritzis D.: Object Oriented Software Composition,
Prentice Hall (1995)

[13] Oaks, Scott: Java Security, O’Reilly (2001)

[14] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel: Flash: An Effi-
cient and Portable Web Server Proceedings of the 1999 USENIX Annual
Technical Conference, (1999)

[15] Szyperski, Clemens: Component Software, Beyond Object Oriented Pro-
gramming, Alm Press (2002)

[16] M. Welsh, D. Culler, E. Brewer: SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services, Symposium on Operating Sys-
tems Principles pp 230-243, ACM Press (2001)

[17] Woodcock J., Davies J.: Using Z: Specification, Refinement, and Proof,
Prentice Hall (1996)

	1 Introduction
	1.1 Motivation for a Web Server Toolkit
	1.2 Goals of The Project
	1.3 Organisation of The Document

	2 Relevant Software Patterns and Architectures
	2.1 Programming Techniques
	2.2 Components and Architectures
	2.2.1 Software Components
	2.2.2 Software Architectures

	2.3 Architecture for Web Services
	2.3.1 Customisation and Extensibility
	2.3.2 Concurrency

	2.4 Summary

	3 Requirements and Specification
	3.1 The HTTP Protocol
	3.1.1 Persistent Connections

	3.2 Deployment Requirements
	3.3 Modularity Requirements
	3.4 Architectural Description Using Z
	3.4.1 Messages and Connections
	3.4.2 Infrastructure and Operations
	3.4.3 System Descriptions

	3.5 Summary

	4 Proposed Architecture
	4.1 `Pipe and Filter' Functional Composition
	4.2 The Building Blocks
	4.2.1 Essential Components
	4.2.2 Auxiliary Components

	4.3 Internal Message/Object Types
	4.3.1 Static System Types
	4.3.2 Dynamic User Types

	4.4 The Connectors
	4.5 Assembly Rules and Patterns
	4.5.1 The Straight Pipeline Assembly
	4.5.2 Decorated Responders
	4.5.3 Responder Partitioning

	4.6 Scaling to Higher Degrees of Concurrency
	4.6.1 Introducing Concurrent Transformers
	4.6.2 Introducing Concurrent Responders
	4.6.3 Introducing Multiple Dispatchers

	4.7 Summary

	5 Implementation
	5.1 Java Package Overview
	5.2 Class Descriptions
	5.2.1 ConnectionAggregator
	5.2.2 Connection
	5.2.3 SessionMap
	5.2.4 SmartHashMap
	5.2.5 SimpleSSLDispatcher
	5.2.6 SimpleRouter
	5.2.7 FileAuthoriser

	5.3 Summary

	6 Case Studies
	6.1 Case 1: An Embedded Server
	6.1.1 The Requirement
	6.1.2 Proposed Server Assembly
	6.1.3 Customisation
	6.1.4 Putting The Components Together

	6.2 Case 2: A Standard Server
	6.2.1 The Requirement
	6.2.2 Proposed Server Assembly
	6.2.3 Customisation
	6.2.4 Putting The Components Together

	6.3 Summary

	7 Conclusion and Future Work
	A Application Programming Interface
	A.1 net.zuze.msc.csp
	A.2 net.zuze.msc.artefacts
	A.3 net.zuze.msc.artefacts.util
	A.4 net.zuze.msc.util
	A.5 net.zuze.msc.protocols
	A.6 net.zuze.msc.Exceptions
	A.7 net.zuze.msc.skeletons
	A.8 net.zuze.msc.simpleserver

	B Contents of The CD
	B.1 /dissertation
	B.2 /sourcecode
	B.3 /javadoc
	B.4 /build

